
MODELING NETWORK
INTERDICTION TASKS

DISSERTATION

Benjamin S. Kallemyn, Major, USAF

AFIT-ENS-DS-15-S-032

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this dissertation are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government. This is an academic work and should not be used to imply or infer
actual mission capability or limitations.

AFIT-ENS-DS-15-S-032

MODELING NETWORK

INTERDICTION TASKS

DISSERTATION

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Operations Research

Benjamin S. Kallemyn, BS, MS

Major, USAF

September 2015

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENS-DS-15-S-032

MODELING NETWORK

INTERDICTION TASKS

Benjamin S. Kallemyn, BS, MS
Major, USAF

Committee Membership:

Richard F. Deckro, DBA
Chairman

LTC Brian J. Lunday, PhD
Member

Lt Col Matthew J. Robbins, PhD
Member

Maj Dustin G. Mixon, PhD
Member

ADEDEJI B. BADIRU, PhD
Dean, Graduate School of

Engineering and Management

AFIT-ENS-DS-15-S-032

Abstract

Mission planners seek to target nodes and/or arcs in networks that have the greatest

benefit for an operational plan. In joint interdiction doctrine, a top priority is to assess and

target the enemy’s vulnerabilities resulting in a significant effect on its forces.

An interdiction task is an event that targets the nodes and/or arcs of a network re-

sulting in its capabilities being destroyed, diverted, disrupted, or delayed. Lessons learned

from studying network interdiction model outcomes help to inform attack and/or defense

strategies.

A suite of network interdiction models and measures is developed to assist decision mak-

ers in identifying critical nodes and/or arcs to support deliberate and rapid planning and

analysis. The interdiction benefit of a node or arc is a measure of the impact an interdiction

task against it has on the residual network.

The research objective is achieved with a two-fold approach. The measures approach

begins with a network and uses node and/or arc measures to assess the benefit of each for

interdiction. Concurrently, the models approach employs optimization models to explicitly

determine the nodes and/or arcs that are most important to the planned interdiction task.

iv

I would like to thank the wife, and the kids.

Most of all, I give thanks to The Way, The Truth, and The Life.

v

Acknowledgements

I would like to thank the advisor, the committee, and the wingman.

My advisor, Dr. Deckro, was instrumental in helping to frame the dissertation into a

cohesive document and gave immeasurable advice through the entire process.

My committee, Dr. Lunday, Dr. Robbins, and Dr. Mixon, was always available to

improve my work; their time and guidance were invaluable.

Finally, my wingman, Smalz, during this second round at AFIT, helped make the time

more bearable, even if it was sometimes less productive.

Benjamin S. Kallemyn

vi

Table of Contents

Page

Abstract . iv

Acknowledgements . vi

List of Figures . x

List of Tables . xii

I. Introduction . 1

1.1 Background . 1
1.2 Research Overview . 3
1.3 Dissertation Overview . 7

II. Pertinent Literature . 8

2.1 Introduction . 8
2.2 Network Topology Measures . 9

2.2.1 Nodal Measures - Graph Theory . 10
2.2.2 Network Measures - Graph Theory . 21
2.2.3 Nodal Measures - SNA . 35
2.2.4 Network Measures - SNA . 45

2.3 Optimization Models . 49
2.3.1 Network Interdiction . 49
2.3.2 Network Diversion . 54
2.3.3 Network Disruption . 61

2.4 Summary . 63

III. Measures After Destroying Nodes . 64

3.1 Introduction . 64
3.2 Geodesics and Related Measures . 64

3.2.1 Nodal Measures Related to Geodesics . 66
3.2.2 Network Measures Related to Geodesics . 67
3.2.3 All Geodesics Algorithms . 69
3.2.4 Analysis of Measure Computations . 72
3.2.5 Geodesics and Related Measures Summary . 84

3.3 Extending All Geodesics Information . 87
3.3.1 Extending Geodesic Algorithms . 88
3.3.2 Analysis of Measure Computations . 93
3.3.3 Expanding All Geodesics Information Summary 101

3.4 Geodesics After Node Destruction . 101

vii

Page

3.4.1 GAND Approach . 102

3.4.2 GAND Extensions . 108

3.4.3 New Measures Related to GAND Outputs . 110

3.4.4 GAND Testing . 115

3.4.5 Geodesics After Node Destruction Summary . 122

3.5 Summary . 127

IV. Destroy Interdiction Tasks . 129

4.1 Introduction . 129

4.2 Maximum Flow Models . 130

4.3 Shortest Path Models . 138

4.4 Summary . 147

V. Divert Interdiction Tasks . 148

5.1 Introduction . 148

5.2 Maximum Flow Diverting . 153

5.2.1 Numerical Examples . 157

5.2.2 Testing and Results . 160

5.3 Shortest Path Diverting . 167

5.3.1 Numerical Examples . 169

5.3.2 Testing and Results . 170

5.4 Model Extensions . 174

5.4.1 Extending the Divert Set . 174

5.4.2 Model Extensions for NDP . 175

5.5 Summary . 181

VI. Disrupt Interdiction Tasks . 183

6.1 Introduction . 183

6.2 Disrupting Paths and Flows . 184

6.2.1 Notional Example . 188

6.2.2 Testing and Results . 190

6.3 Flow Model Extensions . 192

6.3.1 Disrupting with Limited Resources . 193

6.3.2 Targeting for Multiple Strikes . 195

6.3.3 Mission Success by Threshold . 198

6.3.4 Pareto Solutions . 200

6.4 Summary . 202

viii

Page

VII. Delay Interdiction Tasks . 204

7.1 Introduction . 204
7.2 Model Development . 206
7.3 Testing . 210
7.4 Model Extensions . 215
7.5 Summary . 218

VIII. Conclusion . 220

8.1 Summary . 220
8.2 Contributions . 220
8.3 Future Research . 226
8.4 Concluding Remarks . 228

A. Test Plan . 229

B. Poster . 237

Bibliography . 238

ix

List of Figures

Figure Page

1 Research Framework . 5

2 Research Framework: Pertinent Literature . 8

3 Research Framework: Network Topology Measure Literature 9

4 Undirected and directed networks [13:p. 18] . 10

5 Center, periphery, and median of a network . 27

6 Research Framework: Optimization Model Literature . 49

7 Research Framework: Measures After Destroying Nodes . 64

8 Measure calculation times and algorithm completion times for
all 100-node test instances . 82

9 Measure calculation times and algorithm completion times for
all 1,000-node test instances . 84

10 Example Network for GAND Approach . 105

11 Weighted Network Instance . 106

12 Unweighted Network Instance . 107

13 Research Framework: Modeling Destroy Interdiction Tasks 129

14 A notional military transportation network [33, 68] . 133

15 Density vs solution time for 100-node network instances tested 135

16 Notional network example with arc-independence . 144

17 Research Framework: Modeling Divert Interdiction Tasks 148

18 Example Network . 156

19 A notional directed network and possible divert set . 157

20 A notional military transportation network [33, 68] . 158

x

Figure Page

21 Shortest path from San Diego to Miami and effects of
Hurricane Katrina . 171

22 US Interstate System example diverting due to Hurricane
Katrina . 171

23 Arc (i, j) is split and proxy node i′ takes its place . 174

24 Research Framework: Network Disrupting Models . 183

25 A notional military transportation network [33, 68] . 189

26 Density vs solution time for 100-node network instances tested 193

27 Pareto Solutions for (rij)1 (left) and (rij)2 (right) capacity
reductions . 202

28 Research Framework: Modeling Delay Interdiction Tasks 204

29 Example network response from interdiction [56] . 207

30 Density vs solution time for 100-node network instances tested 212

31 Research Framework . 220

32 Example of a grid network . 230

33 Example of a star-mesh network . 230

34 Example of an ER network . 231

35 Example of a BA network . 231

36 Example of a WS network . 232

37 Example of a PNDCG network . 233

xi

List of Tables

Table Page

1 Degree nodal measures for networks in Figure 4 . 12

2 Eccentricity nodal measures for networks in Figure 4 . 16

3 Total distance and transmission nodal measures for networks in
Figure 4 . 18

4 Nodal measures from graph theory . 19

5 Degree network measures for networks in Figure 4 . 22

6 Radius and diameter network measures for networks in Figure 4 24

7 Several network measures for networks in Figure 4 . 31

8 Network measures from graph theory . 32

9 Standardized degree centrality measures for networks in Figure 4 36

10 Closeness centrality measures for nodes of networks in Figure 4 38

11 Betweenness centrality measures for nodes of networks in
Figure 4 . 39

12 Clustering coefficient measures for nodes of networks in Figure 4 42

13 Nodal measures from SNA . 43

14 SNA network measures for networks in Figure 4 . 47

15 Network measures from SNA . 48

16 Nodal measures related to geodesics . 67

17 Network measures related to geodesics . 68

18 Parameter settings for 100-node random network structures 74

19 Average computation times for weighted, 100-node random
networks using MIT Toolbox . 76

xii

Table Page

20 Computation times for unweighted, 100-node random networks
using MIT Toolbox . 77

21 Computation times for weighted, 100-node random networks
using NetworkX . 80

22 Computation times for unweighted, 100-node random networks
using NetworkX . 81

23 Parameter settings for 1,000-node random network structures 83

24 Computation times for weighted, 1,000-node random networks
using NetworkX and MATLAB . 85

25 Computation times for unweighted, 1,000-node random
networks using NetworkX and MATLAB . 86

26 Nodal measures and inputs . 94

27 Network measures and inputs . 94

28 Computation times for weighted, 100-node random networks
for EAGL Algorithm testing . 96

29 Computation times for unweighted, 100-node random networks
for EAGL Algorithm testing . 97

30 Computation times for weighted, 1,000-node random networks
for EAGL Algorithm testing . 99

31 Computation times for unweighted, 1,000-node random
networks for EAGL Algorithm testing . 100

32 Nodal measure updates for GAND Approach output . 111

33 Network measure updates for GAND Approach output 112

34 Computation times for weighted, 100-node random networks
for GAND Approach testing in MATLAB . 117

35 Computation times for unweighted, 100-node random networks
for GAND Approach testing in MATLAB . 118

xiii

Table Page

36 Computation times for weighted, 100-node random networks
for GAND Approach testing in Python . 119

37 Computation times for unweighted, 100-node random networks
for GAND Approach testing in Python . 120

38 Accuracy measures for weighted, 100-node random networks
for GAND Approach . 123

39 Accuracy measures for unweighted, 100-node random networks
for GAND Approach . 124

40 Number of instances of invalid infinite geodesic for 100-node
random networks for GAND Approach . 125

41 Destroying Interdiction Task Contributions . 128

42 Data for the notional military transportation network in
Figure 14 [33, 68] . 133

43 Comparison of results for MAD with λ = 0.001 and λ = 0.00001 136

44 Comparison of results for MAD with λ = 0.001 and λ = 1 137

45 Destroying Interdiction Task Contributions . 147

46 Data for the notional military transportation network in
Figure 20 [33, 68] . 158

47 Parameter settings for 100-node random network structures 160

48 Comparison of results for s-D cuts with and without providing
initial solution . 164

49 Comparison of results for D-t cuts with and without providing
initial solution . 165

50 Comparison of results for s-D and D-t cuts . 166

51 Comparison of results for s-D cuts with λ = 0.00001 and λ = 0 173

52 Diverting Interdiction Task Contributions . 182

xiv

Table Page

53 Data for the notional military transportation network in
Figure 25 [33, 68] . 189

54 Parameter settings for 100-node random network structures 191

55 Results for DMP-a for 100-node network instances . 192

56 Disrupting Interdiction Task Contributions . 203

57 Parameter settings for 100-node random network structures 211

58 Comparison of results for MRTP-a with y relaxed and binary 214

59 Delaying Interdiction Task Contributions . 219

60 Dissertation Contributions . 222

61 Random Network Parameters . 234

62 Data Generated for Random Networks . 235

xv

MODELING NETWORK

INTERDICTION TASKS

I. Introduction

1.1 Background

Today’s world is highly connected, and technology advances allow it to be more connected

every day. Transportation networks comprised of roads, railroads, air travel routes, and

waterways allow people and resources to traverse the world. Telecommunications networks

consisting of telephone lines, cellular towers, and satellite relays allow professionals and

families to stay in touch through voice or video calls. Power grids provide electricity to

homes, offices, and recreational facilities. Social networks, whether through online tools

such as Facebook and Twitter or via real connections such as family and work relationships,

connect people around the world. Other networks exist that connect people or things to

resources they require.

The technological advancement of these networks has brought improvements to quality

of life for people around the world [39]. These networks have allowed better medical care

which extends life expectancies [39]. More efficient methods for delivering clean water have

saved many lives as well [50]. Unfortunately, these technological advances have left many

vulnerabilities that adversaries may attempt to exploit.

When a weakness in one of these networks is detected by a malicious actor, they may

attack the flaw to cause widespread chaos. Attacks such as these are considered a form

of network interdiction. Assessing the networks over which a governing body has control

is imperative for identifying these vulnerabilities and hardening them against such attacks.

1

Alternatively, when considering offensive actions against an enemy’s infrastructure networks,

similar analysis may identify their weaknesses to attack so allied forces can gain the advan-

tage.

Network interdiction models are used to inform attack strategies against a network (i.e.,

transportation, telecommunications, power grid, social, and so forth) to reduce its ability to

function at peak performance. Conversely, the lessons learned from analyzing such attacks

shed light on how to best defend the same network. In either case, models developed for this

purpose will prove useful.

The US Department of Defense defines interdiction as “actions to divert, disrupt, delay,

or destroy” capabilities “to prevent the adversary from using assets at the time and place of

his choosing.” [1:p. I-1–I-2]. In a general context, network interdiction involves performing

one or more of these interdiction activities to a network and measuring the effect. Historical

examples of network interdiction applied in warfare are documented as early as 479 BC;

Herodotus records the Battle of Plataea where the Persian army attacked Greek supply lines

and disrupted Greek water access [41]. More recently, Israeli attacks in Gaza targeted power

plants, Hamas leadership, and the television network controlled by Hamas [2]. These and

other examples reveal the act of attacking the enemy’s supply lines and support infrastructure

can have a substantial impact on the outcome of battles [69:p. 1].

In this dissertation, the term interdiction task is used to describe an event that targets

the nodes and/or arcs of a network resulting in its capabilities being destroyed, disrupted,

delayed, or diverted. Network interdiction models can be used to analyze the impact of

such a task against a network. Lessons learned from studying network interdiction model

outcomes help to inform attack strategies by identifying nodes or arcs in the network that,

when attacked, provide a tactical advantage by destroying, disrupting, delaying, or diverting

the adversary’s capabilities. Conversely, the same models can be used to help identify critical

nodes or arcs in networks that must be defended and/or hardened.

2

The Department of Defense publishes doctrine to govern the practice of warfare. In the

doctrine pertaining to the fundamentals of joint interdiction, optimal targeting is of utmost

importance.

A key task during interdiction planning is analyzing the enemy for critical vulner-
abilities that, if attacked, will have a disruptive effect across significant portions
of the enemy force. [1:p. I-3]

This research effort will assist decision makers in identifying critical nodes and/or arcs.

Such knowledge will aid in the planning and execution of interdiction operations against an

adversary’s network.

1.2 Research Overview

Problem Statement. Given a network, identify the arcs and/or nodes to

target that are most effective in destroying, disrupting, diverting, or delaying its

capabilities.

Research Objective. Develop a suite of network models and measures that

will assist decision makers in identifying critical nodes and/or arcs to support

deliberate and rapid planning and analysis.

The interdiction benefit of a node or arc is a measure of the impact an interdiction task

against it has on the residual network. The nodes and/or arcs with the largest benefit

are those that should be targeted when developing an attack strategy against a network

or defended (and/or hardened) when developing a defense strategy. Interdiction benefit is

mission specific. An interdiction task that targets a specific node via a surgical strike may be

more beneficial compared to an alternative task due to the resulting narrow impact and lesser

collateral damage or cascading effects. Alternatively, an interdiction task may be preferable

to an alternative if it leads to widespread effects cascading throughout a network. The suite

3

of models and measures developed in this dissertation can be attuned to model either of

these mission-specific perspectives of interdiction benefit.

The interdiction benefit is assessed from one of two perspectives. First, it is determined

using measures based on the topology of the infrastructure network. Alternatively, it is

determined explicitly using the solutions to optimization models. These two approaches are

illustrated in Figure 1 and are referenced in the remainder of this research using the following

terminology and description.

Measures Approach. Begin with a network and use node and/or arc measures

to assess the benefit of each for interdiction. The fields of graph theory and social network

analysis utilize measures to indicate various features of nodes and arcs. This research will

both identify the currently used network measures and introduce new measures that indicate

the interdiction benefit of a node or arc.

This approach provides a suite of tools that allows an analyst to nominate candidate

nodes to target for the largest impact on the network in question or for the least impact.

It will demonstrate that the time to compute network measures can be completed rapidly

when geodesic (i.e., shortest path length) information is retained, that extending the infor-

mation stored allows the rapid calculation of the network measures, and that utilizing this

information allows the assessment of each node’s removal from the network.

Models Approach. Employ optimization models to explicitly determine the nodes

and/or arcs that are most important to the planned interdiction task. This research will

review or propose models related to the four interdiction tasks (i.e., destroy, disrupt, divert,

and delay) on networks. The solutions to these models will identify the nodes and/or arcs

with the largest interdiction benefit.

This approach provides the analyst and decision maker an array of modeling tools and

options to utilize when investigating options for planning and executing interdiction oper-

4

ations. The suite of models apply each of the four interdiction tasks separately and are

developed to extend to a variety of additional mission constraints and options.

The depiction of the framework in Figure 1 will be used in the remainder of this document

to denote where the discussion fits within this research framework. The four interdiction

tasks identified in joint doctrine, and depicted on the framework chart, are defined as follows.

Destroy

actions that “damage the structure, function, or condition of a target so that it can nei-

ther perform as intended nor be restored to a usable condition, rendering it ineffective

or useless” [1:p. I-4]

Figure 1. Research Framework

5

Divert

actions that “divert enemy forces or assets from areas where there are critical opera-

tional requirements for them” [1:p. I-2]

Disrupt

actions that “interrupt or impede enemy or enemy capabilities or systems” [1:p. I-2]

Delay

actions that “delay the time of arrival of enemy forces or capabilities” [1:p. I-3]

Each of the interdiction tasks is used to fulfill the purpose given in the definition.

The research objectives and contributions align with the two approaches. They are listed

with the objectives and contributions related to the measures approach first, and then those

related to the models approach.

• Generate a network algorithm that readily computes and/or updates measures when

a node is destroyed.

• Develop a network interdiction modeling framework for considering:

– Destroying nodes.

– Diverting network resources from traversing through any of a predefined set of

nodes.

– Disrupting capabilities based on partial damage.

– Delaying the restoration of network resources.

The result of this research thrust is a suite of network interdiction models and measures

that will assist decision makers in identifying critical nodes and/or arcs. This array of

measures and models may serve as modeling options for offensive and defensive operations.

The operations that can be considered when utilizing this suite of measures and models may

6

be either kinetic or non-kinetic actions such as detailed observation, signals collection, denial

of service, or possibly destruction. Thus, the set of models and measures developed in this

dissertation provide a foundation for analysis of operational offensive and/or defensive plans

and a basis for future research.

1.3 Dissertation Overview

The remainder of this dissertation is organized as follows. Chapter II reviews pertinent

literature relevant to the problem statement and research objectives. Chapter III demon-

strates the utility of measures for selecting nodes for destruction. Chapter IV proposes new

models that represent the destruction of nodes and/or arcs in a network. Chapter V in-

troduces the network diverting problem and models to solve it. Chapter VI demonstrates

the utility of a number of models for network disrupting. Chapter VII presents a model-

ing framework to represent interdiction delaying tasks. Finally, Chapter VIII provides a

summary of the research contributions and avenues of future research.

7

II. Pertinent Literature

2.1 Introduction

Figure 2. Research Framework: Pertinent Literature

This chapter summarizes pertinent literature and forms a foundation for the techniques of

the measures and models approaches of the research framework, which is depicted in Figure 2.

The measures approach has its foundation in the fields of social network analysis (SNA) and

graph theory. Each of these fields uses measures to assess an attribute of the network

topology. Section 2.2 reviews literature pertinent to this approach. The models approach

utilizes optimization model solutions to determine the most important nodes and/or arcs.

Optimization models that are foundational for understanding the four interdiction tasks are

reviewed in Section 2.3.

8

2.2 Network Topology Measures

Figure 3. Research Framework: Network Topology Measure Literature

This section provides a review of literature focussed on determining common measures

used in graph theory and social network analysis (SNA). When selecting a measure to indicate

an interdiction benefit for a specified task, the feature of the network’s topology that the

measure indicates will be important. For each measure commonly applied in these fields,

insights including a description of the measure, the way it is computed, and its common

uses are provided. These insights will allow the extension of these measures to interdiction

benefit.

In graph theory, there are measures that serve to illustrate features of of individual nodes

and the entire network. Some are computed with ease, others are used in assumptions to

make strong conclusions for graphs with the specified feature. In SNA, several measures have

been used to indicate the importance of nodes in a network. A number of these measures

are the same as the graph theory measures, while others are different. A subset of graph

theoretic and SNA measures are presented.

9

2.2.1 Nodal Measures - Graph Theory.

The first measures reviewed are specific to individual nodes in a network and are common

to graph theory literature. The main source is the introductory graph theory book by

West [65]. The networks in Figure 4 are used to illustrate the measures and will be referenced

throughout this section. Network N2 is used to illustrate directed graphs in the work of

Chartrand and Tian [13:p. 18]. Networks N1 and N3 are variations of their directed network.

Each of the following measures reflect properties of a network or graph, N . The network

consists of a set V of vertices or nodes in which each of the n nodes is indexed i = 1, . . . , n.

Nodes are connected by edges or arcs. The set of arcs is denoted E and individual arcs are

identified by pairs (i, j), where i, j ∈ V . An adjacency matrix A is the matrix representation

of the network. A is an n × n matrix in which each entry aij = 1 if there is an arc from

node i to node j and otherwise is 0. An undirected graph has a symmetric adjacency matrix

Figure 4. Undirected and directed networks [13:p. 18]

10

since arcs can be thought of as being connected equally in both directions or that the order

of the pair does not matter [65:p. 6]. Network N1 in Figure 4 is undirected; flow or travel

may occur in ether direction along each arc. For directed networks, the order of the arc

pair matters. The first node of the pair is denoted as the tail and is the starting point of

the arc, the second node of the arc pair is the head and is the end point of the arc. Flow

or travel along an arc in a directed network is allowed only in the direction of the arrows

in the network’s depiction, that is, over arcs from the tail nodes to the head nodes [65:p.

53]. An undirected network can be represented as a directed network with a separate arc for

each direction between connected nodes. In Figure 4, networks N2 and N3 depict directed

networks.

A directed network is strongly connected if, for every (i, j)-pair of nodes in the network,

there is a directed path from node i to node j [65:p. 56]. Network N2 in Figure 4 is strongly

connected, while N3 is weakly connected since there is not a directed path between every

pair of nodes [65:p. 56]. For instance, there is no directed path from node 1 to node 2.

Consider a flow network in which arcs represent pipes where the flow is allowed to travel

in one direction in a pipe. Pipe junctions are modeled by nodes, and each pipe is limited

by its capacity. There are specific nodes for the source and terminus denoted s and t,

respectively. If there are multiple sources (termini), a supersource (superterminus) is added

with arcs to each of the sources (from the termini), creating a network with a single source

and terminus [29]. Network N3 in Figure 4 is a flow network with the source at node 2 and

the terminus at node 6.

2.2.1.1 Degree.

For undirected networks, the degree d(i) is the number of arcs that are incident to node

i. It is computed as the sum of the row (or column) of the adjacency matrix associated with

11

node i,

d(i) =
∑
j∈V

aij =
∑
j∈V

aji. (2.1)

The number of arcs in an undirected network, m, is half of the sum of the degrees of each

node in the network, m =

∑
i∈V d(i)

2
[65:p. 35]. For directed networks, the degree of a node

is distinguished based upon whether the node is at the head or tail of an arc. The out-degree

d+(i) of a node is the number of arcs that originate at that node, whereas the in-degree d−(i)

of a node is the number of arcs that terminate at that node. The out-degree is computed

by summing the row of the adjacency matrix for node i, and the in-degree is the sum of the

ith column of the adjacency matrix.

d+(i) =
∑
j∈V

aij, (2.2)

d−(i) =
∑
j∈V

aji, (2.3)

d(i) = d+(i) + d−(i). (2.4)

Since each arc has a head and a tail, m =
∑
i∈V

d+(i) =
∑
i∈V

d−(i) [65:p. 59].

Network N1 in Figure 4 is an undirected network, so the degree calculation from (2.1)

is used. For the directed networks N2 and N3, the degree calculations from (2.2)-(2.4) are

used. Table 1 lists the degree measures for these networks. The degree of node 4 in the

N1 N2 N3

Node (i) d(i) d+(i) d−(i) d(i) d+(i) d−(i) d(i)
1 2 1 1 2 1 1 2
2 3 1 2 3 3 0 3
3 2 1 1 2 1 1 2
4 3 2 2 4 1 2 3
5 3 3 2 5 1 2 3
6 1 1 1 2 0 1 1

Table 1. Degree nodal measures for networks in Figure 4

12

directed network N1 is 3. The in-degree of node 4 in N2 is 2 (two arcs are directed into the

node), and its out-degree is 2 (two arcs are directed out of the node), resulting in a degree

of 4.

2.2.1.2 Eccentricity.

The distance between nodes in a network is measured using paths. The eccentricity

of node i is the maximum of the shortest paths from node i to all other nodes. In other

words, eccentricity of i is the length of the shortest path from node i to the node that is

the farthest distance away. For undirected, connected networks, each node will have a finite

eccentricity [65:p. 71]. The length of the shortest path between nodes in which there is

no path is considered to be infinite. Therefore, in a directed network, it is possible that

the eccentricity for some nodes may be infinite since, although the network is connected,

the direction of flow does not allow a directed path between the node and another node.

Sometimes an analyst is concerned with the number of arcs in the shortest path between

nodes; in this case, the distance used should be of unit length, or equivalently, use the

adjacency matrix as the distance matrix: dij = aij.

Let dN(i, j) denote the shortest (i, j)-path in an undirected network N . Then the eccen-

tricity of a node is [65:p. 71]

e(i) = max
j∈V

dN(i, j) = max
j∈V

dN(j, i). (2.5)

For directed networks, the eccentricity of a node is distinguished based upon whether the

node is at an endpoint of the shortest path. The out-eccentricity e+(i) of a node is the

maximum shortest path distance from node i to any other node in the network whereas the

in-eccentricity e−(i) of a node is the maximum shortest path distance from any other node

to node i [37:p.884]. The out-eccentricity, the in-eccentricity, and the eccentricity of a node

13

in a directed network are [46:p. 381]

e+(i) = max
j∈V

dN(i, j), (2.6)

e−(i) = max
j∈V

dN(j, i), (2.7)

e(i) = max(e+(i), e−(i)). (2.8)

Using an algorithm to find all the shortest paths makes the calculation of the measure

eccentricity tractable. The Floyd-Warshall Algorithm (denoted Algorithm 1) identifies the

shortest path distance between all node combinations. The implementation presented is

based on the presentation in [3:p. 148]. The main contribution of the algorithm is the

induction step based on dynamic programming that ensures the distance of the shortest

(i, j) path is computed. This insight is attributed to Warshall [62]. The algorithm’s present

form is attributed to Floyd [28]. The Floyd-Warshall Algorithm, as described in Algorithm 1,

runs in O(n3) time since there is an iteration through each node in the network for every

node pair [3:p. 148].

The output of Algorithm 1 gives a matrix M of all shortest paths where the (i, j)th entry,

mij, is the shortest path from node i to node j. For this research, mii = 0 by assumption.

In addition, the algorithm outputs a matrix P of the predecessor nodes where the (i, j)th

entry, pij, is the node predecessor on the shortest path from node i to node j. Using this

information, any shortest (i, j) path can be obtained by backtracking from node j. For

instance, if node k is the predecessor for the (i, j) path, i.e. pij = k, the next predecessor is

determined by pik until node i is reached [3:p. 148].

The out- and in-eccentricity measures (2.6)–(2.7), and therefore the eccentricity (2.5) of

a node, can be computed based on the output of Algorithm 1. The out-eccentricity for node

i is the maximum value in row i of M , e+(i) = max
j∈V

m(i, j). The in-eccentricity for node i

14

Algorithm 1 Floyd-Warshall Algorithm [3:p. 148]

Input
A network with nodes N = 1, . . . , n and arcs E = (i, j), i, j ∈ N . The node adjacency
matrix A and non-negative arc distances dij.

Output
A matrix M of all shortest paths where the (i, j)th entry is the shortest path from
node i to node j. A matrix P of the predecessor nodes where the (i, j)th entry is the
node predecessor on the shortest path from node i to node j.

Initialization:
Generate a n × n matrix M with elements mij having an infinite value: mij = ∞,
∀i, j ∈ N .
Ensure there are no paths from a node to itself: mii = 0, ∀i ∈ N .
Populate M with the known distance between adjacent nodes: mij = dij, ∀(i, j) ∈ E.
Populate P with the known predecessor of adjacent nodes: pij = i, ∀(i, j) ∈ E.

Shortest Paths:
For each k in the set of nodes,

For each (i, j) in N ×N ,
If mij > mik +mkj, then

Update the shortest (i, j) path length, mij = mik +mkj.
Update the predecessor node on the shortest path, pij = pkj.

Next (i, j).
Next k.

is the maximum value in column i of M , e−(i) = max
j∈V

m(j, i). When referring to directed

networks, the analyst must be cautious with the terminology used for eccentricity. In some

cases, the out-eccentricity is the only measure used for directed networks [13, 12]. In these

cases, eccentricity refers to the minimum distance from the node to all other nodes.

A node j is called an out-centric node of i if the shortest (i, j)-path length is equal to

the out-eccentricity of node j, dN(i, j) = e+(i). Likewise, node j is an in-centric node of i if

dN(j, i) = e−(i) [34].

Recall that flow networks are directed networks with a source node having only outgoing

arcs and a terminus node having only incoming arcs. Thus, in a flow network, the source, or

supersource if there are multiple sources, is the only node with a finite out-eccentricity. The

source (supersource) is the only node from which all other nodes are reachable in a connected

15

N1 N2 N3

Node (i) e(i) e+(i) e−(i) e(i) e+(i) e−(i) e(i)
1 2 5 4 5 ∞ ∞ ∞
2 3 4 3 4 3 ∞ ∞
3 3 3 4 4 ∞ ∞ ∞
4 2 2 3 3 ∞ ∞ ∞
5 2 3 4 4 ∞ ∞ ∞
6 3 4 5 5 ∞ 3 ∞

Table 2. Eccentricity nodal measures for networks in Figure 4

network, i.e. there is a directed path from the source to all other nodes. All other nodes

have infinite out-eccentricities. Conversely, the terminus node, or super terminus if there are

multiple termini, is the only node with a finite in-eccentricity. The terminus (superterminus)

is the only node reachable from all other nodes, i.e. there is a directed path from all other

nodes to the terminus. The in-eccentricity for all other nodes is infinite.

Table 2 lists the eccentricity measures for the networks in Figure 4. The adjacency

matrices for each network were used in Algorithm 1 (Floyd-Warshall) with unit distances

between adjacent nodes (counting the number of arcs on the shortest path). In network N1,

node 2 has an eccentricity of 3 since node 6 is the maximum shortest distance from node 2

to any other node, which traverses three arcs.

2.2.1.3 Total Distance.

The total distance td(i) of node i in a network is the sum of the length of the shortest paths

from node i to all other nodes in the network [12]. The total distance of a node represents

how close a node is to all other nodes since it measures the sum of the distances to every

other node. In a social network, the total distance may indicate how quickly information

can reach all others, where it is assumed people with smaller total distance measures reach

everyone more quickly. The total distance is sometimes referred to as the status of the node

16

and is computed by [13]

td(i) =
∑
j∈V

dN(i, j). (2.9)

For an undirected network, the total distance of a node can be computed from the output

of Algorithm 1 as td(i) =
∑
j∈V

mij =
∑
i∈V

mij. The second equality in the computation

is valid because the adjacency matrix and the distance matrix, which is composed of the

(i, j)-distances between adjacent nodes, are symmetric.

For directed networks, the total distance from a node to all others or from all others

to the node may be different. This difference allows an analyst to distinguish the extent

to which a node influences/reaches into the network, or is influenced by/connected to the

network. These quantities are referred to as the out-transmission σ+(i) and in-transmission

σ−(i) of node i, respectively [55:pp. 1–2]:

σ+(i) =
∑
j∈V

dN(i, j), (2.10)

σ−(i) =
∑
j∈V

dN(j, i). (2.11)

Notice that the calculation of total distance (2.9) and out-transmission (2.10) are the same.

In cases where the network has no (i, j)-path, the distance is infinite, dN((i, j) = ∞. In

these cases, the total distance, out-transmission, or in-transmission will also be infinite. The

measure will be infinite for all nodes except the source (out-transmission) or terminus (in-

transmission) in flow networks with a single source and/or terminus. In networks that are

not strongly connected, some nodes will have infinite out- or in-transmission measures.

The out- and in-transmission measures can be calculated based on the output matrix

M from Algorithm 1 by σ+(i) =
∑
j∈V

mij and σ−(i) =
∑
j∈V

mji. In other words, the out-

transmission for node i is the sum of the ith column of M , and its in-transmission is the

sum of the ith row of M .

17

N1 N2 N3

Node (i) td(i) σ+(i) σ−(i) σ+(i) σ−(i)
1 8 15 12 ∞ ∞
2 8 14 9 8 ∞
3 9 11 12 ∞ ∞
4 7 8 9 ∞ ∞
5 7 8 11 ∞ ∞
6 11 12 15 ∞ 11

Table 3. Total distance and transmission nodal measures for networks in Figure 4

Table 3 lists the total distance and transmission measures for the networks in Figure 4.

The adjacency matrices were used in Algorithm 1 (Floyd-Warshall) using unit distances

between adjacent nodes. Node 1 in network N1 has a total distance of 8. This value is the

sum of the distances from node 1 to each of the other nodes, td(i) = 1 + 2 + 2 + 1 + 2 = 8,

where each term in the sum is the shortest distance from node 1 to node 2, to node 3, and

so forth.

2.2.1.4 Summary.

The nodal graph theoretic measures are repeated in Table 4. These measures indicate

the connectedness (larger degree), centrality (smaller eccentricity), or status (larger total

distance) of each node in the network [13, 12].

18

Table 4. Nodal measures from graph theory

Measure Equation Reference Explanation

out-degree d+(i) =
∑
j∈V

aij [65:p. 58]

Indicate the extent

to which a node is

connected.

in-degree d−(i) =
∑
j∈V

aji [65:p. 58]

degree
d(i) = d+(i) + d−(i) (directed) [65:p. 58]

d(i) =
∑
j∈V

aij =
∑
j∈V

aji (undirected) [65:p. 34]

out-eccentricity e+(i) = max
j∈V

dN(i, j) [46:p. 381]

Indicate how central

a node is within the

network.

in-eccentricity e−(i) = max
j∈V

dN(j, i) [46:p. 381]

eccentricity
e(i) = max(e+(i), e−(i)) (directed) [46:p. 381]

e(i) = max
j∈V

dN(i, j) = max
j∈V

dN(j, i) (undirected) [65:p. 71]

Continued on next page

19

Table 4 – Continued from previous page

Measure Equation Reference Explanation

total distance td(i) =
∑
j∈V

dN(i, j) [13:p. 16]

Indicate the status

of a node.out-transmission σ+(i) =
∑
j∈V

dN(i, j) [55:p. 1]

in-transmission σ−(i) =
∑
j∈V

dN(j, i) [55:p. 2]

20

2.2.2 Network Measures - Graph Theory.

The remaining graph theoretic measures are representative of the entire network. The

definitions of the nodal measures are used to compute some of the network measures. The

measures presented in this section are a subset of the graph theoretic measures for entire

networks. Each of the measures presented in this section may also be applied to sub-networks

to indicate features of that portion of the underlying network structure.

2.2.2.1 Minimum, Maximum, and Average Degree.

A measure for the entire network related to the nodal degrees is the minimum degree δ(N).

The minimum degree is the degree value of the node with the smallest degree. Similarly, the

network has a minimum out-degree δ+(N) and in-degree δ−(N) measure [12, 65]

δ(N) = min
i∈V

d(i), (2.12)

δ+(N) = min
i∈V

d+(i), (2.13)

δ−(N) = min
i∈V

d−(i). (2.14)

The maximum degree D(N) is the degree value of the node with the largest degree.

Similarly, the network has a maximum out-degree D+(N) and in-degree D−(N) measure [12,

65],

D(N) = max
i∈V

d(i), (2.15)

D+(N) = max
i∈V

d+(i), (2.16)

D−(N) = max
i∈V

d−(i). (2.17)

21

Network (N) δ+(N) δ−(N) δ(N) D+(N) D−(N) D(N) d(N)
N1 1 1 1 3 3 3 2.333
N2 1 1 2 3 2 5 3
N3 0 0 1 3 2 3 2.333

Table 5. Degree network measures for networks in Figure 4

The average degree of the network is [65]

d(N) =

∑
i∈V d(i)

n
=

2m

n
, (2.18)

where n and m are the number of nodes and arcs, respectively. The average out- or in-

degree is not calculated since
∑
i∈V

d+(i) =
∑
i∈V

d−(i) = m [12], which makes the average out-

or in-degree equivalent to half the average degree.

The degree measures (minimum, maximum, and average) are computed for the networks

in Figure 4 using the measures in Table 1. The results are depicted in Table 5.

2.2.2.2 Diameter.

The diameter of a network diam(N) is the longest of the (i, j)-shortest-paths, where

i 6= j, for all possible node combinations. It is computed as the maximum of the nodal

eccentricities [12, 65]

diam(N) = max
i∈V

e(i). (2.19)

The diameter of a network can be computed from the output of Algorithm 1 as diam(N) =

max
i,j∈V

mij. Recall that the eccentricity for a node in a directed network may be infinite;

therefore, the diameter may also be infinite and can be a poor measure for directed networks.

For flow networks, the diameter is infinite.

22

2.2.2.3 Radius.

The radius of a network rad(N) is the shortest (i, j)-path for all possible node combina-

tions. It is computed as the minimum of the nodal eccentricities

rad(N) = min
i∈V

e(i). (2.20)

A relationship between the radius and diameter of an undirected, connected network is [13,

12]

rad(N) ≤ diam(N) ≤ 2rad(N). (2.21)

However, it is not true, in general, for undirected networks that diam(N) ≤ 2rad(N) [12].

The other inequality, rad(N) ≤ diam(N), does hold.

The radius can be defined in terms of the out- and in-eccentricity measures. The out-

radius is the minimum of the out-eccentricities and the in-radius is the minimum of the

in-eccentricities [46],

rad+(N) = min
i∈V

e+(i), (2.22)

rad−(N) = min
i∈V

e−(i). (2.23)

Table 6 lists the diameter and radius measures for the networks in Figure 4. The radius

and diameter of the networks are calculated using the eccentricity measures from Table 2.

In network N2, the diameter is larger than 2 times the radius, illustrating that (2.21) does

not hold generally for directed networks [13, 12].

2.2.2.4 Center.

A central node of a network is a node that has the smallest eccentricity. Since the radius

of the network is the smallest eccentricity value, the set of central nodes C(N) of network

23

Network (N) rad+(N) rad−(N) rad(N) diam(N)
N1 2 2 2 3
N2 2 3 3 5
N3 3 3 ∞ ∞

Table 6. Radius and diameter network measures for networks in Figure 4

N is [12]

C(N) = {i|e(i) = rad(N)} = {i|e(i) = min
j∈V

e(j)}. (2.24)

The center of a network cen(N) is the network induced by the central nodes, i.e. a network

consisting of the central nodes and any arcs between them [12, 65].

The central nodes can be defined in terms of the out- and in-eccentricity measures as

well. The out-central nodes are those nodes that have minimum out-eccentricities and the

in-central nodes are those with minimum in-eccentricities [34, 46],

C+(N) = {i|e+(i) = rad+(N)} = {i|e+(i) = min
j∈V

e+(j)}, (2.25)

C−(N) = {i|e−(i) = rad−(N)} = {i|e−(i) = min
j∈V

e−(j)}. (2.26)

The out-center and in-center of a network are the networks induced by the out- or in-central

nodes, respectively.

In Figure 4, the central nodes of network N1 are nodes 1, 4, and 5, and are depicted in

Figure 5. The node that is central and out-central in N2 is node 4, while nodes 2 and 4

are in-central. In the flow network N3, node 2, the source, is out-central and node 6, the

terminus, is in-central. However, the center is all nodes since the radius is infinite for each

node.

24

2.2.2.5 Periphery.

A peripheral node of a network is a node that has the largest eccentricity. Since the

diameter of the network is the largest eccentricity, the set of peripheral nodes P (N) of

network N is [13, 12]

P (N) = {i|e(i) = diam(N)} = {i|e(i) = max
j∈V

e(j)}. (2.27)

The periphery of a network per(N) is the network induced by the peripheral nodes, i.e. a

network consisting of the peripheral nodes and any arcs between them [13, 12].

Network N1 of Figure 4 has a periphery consisting of nodes 2, 3, and 6, and are depicted

in Figure 5. Nodes 1 and 6 are the peripheral nodes of N2. All nodes are in the periphery

of the flow network of N3 since the diameter is infinite for all nodes.

2.2.2.6 Median.

A medial node of a network is the node with the minimum total distance [13]. The set

of medial nodes M(N) in network N is

M(N) = {i|td(i) = min
j∈V

td(j)}. (2.28)

The median of a network med(N) is the network induced by the medial nodes, i.e. a network

consisting of the medial nodes and any arcs between them. Note that the median of a network

need not be connected. The median is another concept dealing with the “middle” of the

network [13].

The medial nodes can be defined in terms of the out- and in-transmission measures. The

out-medial nodes are those nodes that have minimum out-transmissions and the in-medial

25

nodes are those with minimum in-transmissions,

M+(N) = {i|σ+(i) = min
j∈V

σ+(j)}, (2.29)

M−(N) = {i|σ−(i) = min
j∈V

σ−(j)}. (2.30)

The out-median and in-median of a network are the networks induced by the out- or in-

medial nodes, respectively. The out-median of a flow network is the source (supersource)

and the in-median is the terminus (superterminus).

The center, periphery, and median of network N1 are depicted in Figure 5. Relative to

the entire network, the central and medial nodes of network N1 appear towards the middle of

the network, while the peripheral nodes appear on the edges of the network. Note the subtle

difference in the two measures indicating the “middle” of the network: the central nodes

are nodes 1, 4, and 5 while the median consists of nodes 4 and 5. For N2, the out-medial

nodes are nodes 4 and 5 and the in-medial nodes are nodes 2 and 4. Here, the analyst must

take care to determine which of the medial measures best provides insight into the problem

being studied. In the flow network N3, the out-medial node is node 2, the source, and the

in-medial node is node 6, the terminus. While the center and periphery of the flow network

consisted of all the nodes, the median is the source, node 2, since it is determined as the set

of nodes with the minimum total distance from a node to all others. In addition, the total

distance of all other nodes is infinite since there is no directed path from a non-source node

to the source.

2.2.2.7 Wiener’s Index and Average Distance.

Closely related to the median of a network is the Wiener index or the transmission of

the network. The sum the shortest paths between all pairs of nodes in a network is the

transmission of the network [55]. This quantity is also known as the Wiener index since

26

Figure 5. Center, periphery, and median of a network

Wiener used it to study the properties of paraffin’s boiling point [66]. The Wiener index of

a network w(N) is

w(N) =
∑
i,j∈V

dN(i, j) =
∑
i∈V

td(i). (2.31)

An equivalent definition of the Wiener index is sum of the total distances for each node in the

network. In addition, the sum of out- or in-transmissions is equivalent to the Wiener index,

w(N) =
∑
i∈V

σ+(i) =
∑
i∈V

σ−(i). As is the case for out- and in-transmissions, it is possible to

attain an infinite index if there is no (i, j)-path in a directed network. The Wiener index for

a flow network is infinite. The Wiener index of a network can be computed from the output

of Algorithm 1 as w(N) =
∑
i,j∈V

mij.

The average distance in the network may be more intuitive for analysis. Since the average

is the total of all distances divided by the possible number of pairs, the use of the Wiener

index or average distance is equivalent. The average distance w(N) of the network is [55, 65]

w(N) =

∑
i,j∈V dN(i, j)(

n
2

) =
w(N)

n(n− 1)
. (2.32)

27

The Wiener index or average distance is minimized when the network is an undirected star

and maximized when the network is an undirected path [65].

2.2.2.8 Eigenvalues and Connectivity.

The measures introduced in this section can be used to bound several of the measures

described to this point and can be calculated using the output of Algorithm 1. When the

networks become very large, the measures that use eigenvalues may be computed faster using

linear algebra than those that rely on the algorithmic solutions.

The adjacency matrix A is the matrix representation of the connections within the net-

work. The eigenvalues of A have interesting relationships to the other graph theoretic mea-

sures.

Let neig(A) denote the number of distinct eigenvalues of A, then [65]

diam(N) < neig(A). (2.33)

The smallest and largest eigenvalues of A for network N are denoted λmin(N) and

λmax(N), respectively. For a network N ′ induced by a subset of nodes in N [65],

λmin(N) ≤ λmin(N ′) ≤ λmax(N ′) ≤ λmax(N). (2.34)

This relationship extends to the the extreme eigenvalues when a node is removed from the

network for which N is the original network and N ′ is the network with a node deleted [65].

The minimum, maximum, and average degree of a network are related to λmax(N) in the

following manner [65],

δ(N) ≤ 2m

n
≤ λmax(N) ≤ D(N). (2.35)

28

Another matrix representation of a network N is the Laplacian matrix of the network

L(N). Let Q(N) denote the diagonal matrix whose entries are the degree of the nodes; in

other words, the diagonal entries are qii = d(i). In addition, the adjacency matrix is denoted

by A(N). Then the Laplacian matrix is L(N) = Q(N) − A(N). For undirected networks,

which have symmetric Laplacian matrices, Q(N) has only real eigenvalues and its smallest

eigenvalue is 0 [49]. The second smallest eigenvector is termed the algebraic connectivity of

the network a(N) [27].

There are interesting properties related to the algebraic connectivity of a network. For

a network N with k nodes and their incident arcs removed, the relationship between the

algebraic connectivity of the original network and the modified network N ′ is [27]

a(N ′) ≥ a(N)− k. (2.36)

The algebraic connectivity a(N) is bounded by terms consisting of the minimum degree

δ(N), the number of nodes n, and the number of arcs m is [27]

a(N) ≤ nδ(N)

n− 1
≤ 2m

n− 1
. (2.37)

a(N) ≥ 2δ(N)− n+ 2. (2.38)

For a network in which each of the n nodes is adjacent to every other node (a complete

graph Kn in graph theory), the algebraic connectivity is the number of nodes in the network,

a(Kn) = n [27].

The node connectivity of a network v(N) is the minimum number of nodes that must

be removed from the network that result in the network being disconnected. The arc con-

nectivity of a network e(N) is the minimum number of arcs that must be removed from the

network that result in the network being disconnected [65]. The node and arc connectivity

29

of a network are bounded above by the minimum degree of the network [65],

v(N) ≤ e(N) ≤ δ(N). (2.39)

When m ≥ n−1, the node connectivity is bounded by the average degree of the network [12],

v(N) ≤ bd(N)c. (2.40)

When the network has n nodes and is not complete, then the algebraic connectivity is

bounded in terms of the node connectivity and arc connectivity as follows [27]

a(N) ≤ v(N). (2.41)

a(N) ≥ 2e(N)
(

1− cos
(π
n

))
. (2.42)

The algebraic connectivity appears in the bounds for the diameter of the network [49]

diam(N) ≥ 4

a(N)n
, (2.43)

diam(N) ≤ 2

⌈
D(N) + a(N)

4a(N)
ln(n− 1)

⌉
. (2.44)

The algebraic connectivity appears in bounds for the average distance w(N) for the

network [49]

w(N) ≥ 1

n− 1

(
2

a(N)
+
n− 2

2

)
, (2.45)

w(N) ≤ n

n− 1

⌈
D(N) + a(N)

4a(N)
ln(n− 1)

⌉
. (2.46)

For the networks in Figure 4 and using unit distances for each arc, the Wiener index,

average distance, number of distinct eigenvalues, and algebraic connectivity measures are

30

Network (N) w(N) w(N) neig(A) a(N)
N1 50 1.667 6 0.722
N2 68 2.267 4 1
N3 ∞ ∞ 1 1

Table 7. Several network measures for networks in Figure 4

depicted in Table 7. For the flow network N3, the total distance of each non-source (terminus)

node is infinite, and therefore, the Wiener index and average distance are also infinite.

2.2.2.9 Summary.

The network graph theoretic measures are summarized in Table 8. The degree-related

network measures (minimum, maximum, and average degree) indicate the level of the net-

work’s activeness and can be a proxy for the central tendencies of the network. That is, to

what extent the network (or sub-network) can be considered central or important. The re-

maining measures are related to distance (diameter, radius, central nodes, peripheral nodes,

medial nodes, Wiener index, and average distance) indicate the relative size of the network

in terms of the shortest path and the “centerness” of the network. Each of these measures

will be examined to evaluate whether it gives an indication of the benefit to interdiction

operations within the network. The social network analysis measures expand on this idea of

central nodes in a network.

31

Table 8. Network measures from graph theory

Measure Equation Reference Explanation

minimum degree δ(N) = min
i∈V

d(i) [65:p. 34]

Indicate the level of

the network’s

activeness and can

be a proxy for the

central tendencies of

the network.

minimum out-degree δ+(N) = min
i∈V

d+(i) [65:p. 58]

minimum in-degree δ−(N) = min
i∈V

d−(i) [65:p. 58]

maximum degree D(N) = max
i∈V

d(i) [65:p. 34]

maximum out-degree D+(N) = max
i∈V

d+(i) [65:p. 58]

maximum in-degree D−(N) = max
i∈V

d−(i) [65:p. 58]

average degree d(N) =

∑
i∈V d(i)

n
=

2m

n
[65:p. 35]

Continued on next page

32

Table 8 – Continued from previous page

Measure Equation Reference Explanation

central nodes C(N) = {i|e(i) = rad(N)} [12] [65]

Represent the

“center” of the

network.

out-central nodes C+(N) = {i|e+(i) = rad+(N)} [34] [46:p. 381]

in-central nodes C−(N) = {i|e−(i) = rad−(N)} [34] [46:p. 381]

medial nodes M(N) = {i|td(i) = min
j∈V

td(j)} [13:p. 16]

out-medial nodes M+(N) = {i|σ+(i) = min
j∈V

σ+(j)} [13]

in-medial nodes M−(N) = {i|σ−(i) = min
j∈V

σ−(j)} [13]

Continued on next page

33

Table 8 – Continued from previous page

Measure Equation Reference Explanation

diameter diam(N) = max
i∈V

e(i) [65:p. 71]

Indicate the relative

size of the network

in terms of the

shortest path and

the “centerness” of

the network.

radius rad(N) = min
i∈V

e(i) [65:p. 71]

out-radius rad+(N) = min
i∈V

e+(i) [46:p. 381]

in-radius rad−(N) = min
i∈V

e−(i) [46:p. 381]

Wiener index
w(N) =

∑
i,j∈V

dN(i, j) =
∑
i∈V

td(i)
[65:p. 72]

transmission [55]

average distance w(N) =
w(N)

n(n− 1)
[65:p. 72]

peripheral nodes P (N) = {i|e(i) = diam(N)} [13:p. 16] Represent the “edge”

of the network.

34

2.2.3 Nodal Measures - SNA.

In social network analysis (SNA), several measures have been used to indicate the im-

portance of nodes in a network. Some of these measures are the same as the graph theoretic

measures, while others are similar. Typically in a SNA network, the nodes represent people

and the arcs represent some connection (social, political, personal, and so forth) between

them. The term “actors” is frequently used when referring to the nodes in a social network.

The total distance of a node in graph theory is also termed the accessibility index [36] and

is not reviewed again in this section.

2.2.3.1 Degree Centrality.

The degree centrality of a node, CD(i) in SNA literature, is equivalent to the graph

theoretic measure degree given in (2.1). The degree centrality is standardized by dividing

by the remaining number of nodes in the network (n−1). This allows the comparison of the

degree centrality of nodes in different sized networks [63]

C ′D(i) =
d(i)

n− 1
. (2.47)

The out-degree centrality CD+(i) and in-degree centrality CD−(i) of a node are equivalent to

the graph theoretic measures out-degree (2.2) and in-degree (2.3) [53]. The degree centrality

measures for directed networks are standardized in a similar manner,

C ′D+(i) =
CD+(i)

n− 1
=
d+(i)

n− 1
, (2.48)

C ′D−(i) =
CD−(i)

n− 1
=
d−(i)

n− 1
. (2.49)

C ′D(i) =
CD+(i) + CD−(i)

2(n− 1)
=
d+(i) + d−(i)

2(n− 1)
=
C ′D+(i) + C ′D−(i)

2
. (2.50)

35

N1 N2 N3

Node (i) C ′D(i) C ′D+(i) C ′D−(i) C ′D(i) C ′D+(i) C ′D−(i) C ′D(i)
1 0.4 0.2 0.2 0.2 0.2 0.2 0.2
2 0.6 0.2 0.4 0.3 0.6 0 0.3
3 0.4 0.2 0.2 0.2 0.2 0.2 0.2
4 0.6 0.4 0.4 0.4 0.2 0.4 0.3
5 0.6 0.6 0.4 0.5 0.2 0.4 0.3
6 0.2 0.2 0.2 0.2 0 0.2 0.1

Table 9. Standardized degree centrality measures for networks in Figure 4

Recall that the degree of a directed network is the sum of the out- and in-degrees (2.4).

The standardized degree centrality for directed networks has 2(n − 1) in the denominator

since there are two times the number of other nodes in the network with which it can be

connected (one for each direction). The standardized degree centralities measure the portion

of the network with which a node has contact and represent the “potential communication

activity” of a node [30].

The standardized degree centrality measures (out-degree, in-degree, and degree) are com-

puted for the networks in Figure 4 using the measures in Table 1. The results are depicted

in Table 9. In network N2, the standardized out-degree centrality of node 4 is 0.4 since there

are two arcs leaving the node out of the five possible remaining nodes to which arcs could

lead. Likewise, the in-degree centrality and degree centrality for node 4 are 0.4 and 0.4,

respectively.

2.2.3.2 Closeness Centrality.

The closeness centrality of a node CC(i) measures the centrality of a node based not only

on its immediate neighbors, but also on the distance in the network from all other nodes,

taking into account indirect links to others. Thus, it is related to the total distance measure

of a node (2.9). The closeness centrality of node i and the standardized measure are [63:pp.

36

184–185]

CC(i) =
1∑

j∈V dN(i, j)
=

1

td(i)
, (2.51)

C ′C(i) =
n− 1∑

j∈V dN(i, j)
= (n− 1)CC(i). (2.52)

Nodes that have no path between them, and therefore have an infinite total distance, would

have a closeness measure of zero [53:p. 184].

The out- and in-transmissions can be used to compute the out-closeness centrality of a

node CC+(i) and its in-closeness centrality CC−(i), respectively. These measures and their

standardizations are

CC+(i) =
1

σ+(i)
, (2.53)

C ′C+(i) =
n− 1

σ+(i)
= (n− 1)CC+(i), (2.54)

CC−(i) =
1

σ−(i)
, (2.55)

C ′C−(i) =
n− 1

σ−(i)
= (n− 1)CC−(i). (2.56)

The out-closeness centrality of a node is also called radiality and measures the extent of

the nodes reach into the network [61]. The in-closeness centrality of a node is also called

integration and measures how well-connected a node is within the network [61]. Highly

integrated nodes (those with the largest integration, or in-closeness scores) can be reached

quickly [61].

Because the closeness centrality is related to the total distance and transmission, in

flow networks with a single source and terminus, the source is the only node with non-

zero out-closeness centrality and the terminus is the only node with non-zero in-closeness

37

N1 N2 N3

Node (i) CC(i) C ′
C(i) CC+(i) C ′

C+(i) CC−(i) C ′
C−(i) CC+(i) C ′

C+(i) CC−(i) C ′
C−(i)

1 0.125 0.625 0.067 0.333 0.083 0.417 0 0 0 0
2 0.125 0.625 0.071 0.357 0.111 0.556 0.125 0.625 0 0
3 0.111 0.556 0.091 0.455 0.083 0.417 0 0 0 0
4 0.143 0.714 0.125 0.625 0.111 0.556 0 0 0 0
5 0.143 0.714 0.125 0.625 0.091 0.455 0 0 0 0
6 0.091 0.455 0.083 0.417 0.067 0.333 0 0 0.091 0.455

Table 10. Closeness centrality measures for nodes of networks in Figure 4

centrality. The closeness centralities measure the inverse average distance to all other nodes

and represent the “independence or efficiency” of a node [30].

Table 10 lists the closeness centrality measures for the networks in Figure 4. The ad-

jacency matrices were used in Algorithm 1 (Floyd-Warshall) with unit distances between

adjacent nodes. As expected, the non-source and non-terminus nodes in the flow network

(N3) have out- and in-centrality values of 0, corresponding to their infinite out- and in-

transmissions (Table 3).

2.2.3.3 Betweenness Centrality.

The betweenness centrality of a node CB(i) measures the extent to which nodes are along

the shortest path between node pairs. These nodes that are between others may have more

influence over the others since they appear on more shortest paths between the other nodes

in the network. They have the potential to affect the flow of information along the path.

The betweenness centrality of node k and its standardization are [10, 53, 63]

CB(k) =
∑

i6=k 6=j∈V

nij(k)

nij
, (2.57)

C ′B(k) =
1

(n− 1)(n− 2)

∑
i6=k 6=j∈V

nij(k)

nij
=

CB(k)

(n− 1)(n− 2)
, (2.58)

where n is the number of nodes in the network, nij is the number of shortest (i, j)-paths,

and nij(k) is the number of shortest (i, j)-paths that include node k. The divisor in the

38

N1 N2 N3

Node (k) CB(k) C ′B(k) CB(k) C ′B(k) CB(k) C ′B(k)
1 2 0.10 2 0.10 1 0.05
2 3 0.15 7 0.35 0 0
3 0 0 7 0.35 0 0
4 6 0.30 11 0.55 3 0.15
5 9 0.45 11 0.55 4 0.20
6 0 0 0 0 0 0

Table 11. Betweenness centrality measures for nodes of networks in Figure 4

standardizing equation (2.58) is the total number of node pairs in the network, not including

the node itself. [63]. The standardized betweenness is independent of arc length since it is

based on the number of arcs on a shortest path and the total number of arcs in the network.

The maximum standardized betweenness centrality is 1, which occurs for the central node

of a star network [53]. The betweenness centrality measures can be computed whether

the network is connected or directed [63]. The betweenness centrality values can also be

computed whether the arc distances have a length of 1 or not [10].

The betweenness centrality is readily computed using the algorithm given by Brandes [10].

The algorithm runs in O(nm) time for networks with unweighted arcs and O(nm+n2 log n)

time for weighted networks. Algorithm 2 details the unweighted version of the algorithm to

compute betweenness centrality. The algorithm uses a shortest path discovery and counting

routine (breadth first search) for each node and then accumulates the betweenness centrality

using node dependencies. Node dependencies are computed using a recursive relation (used

in the accumulation phase of the algorithm) so that nij and nij(k) in Equation (2.57) are not

directly computed. The algorithm presented is as given in another paper by Brandes [11].

Table 11 lists the betweenness centrality measure for the networks in Figure 4. Node 6

is not on any shortest paths in any of the three networks and has a betweenness centrality

of 0 because the endpoints of the path are not included in the count.

39

Algorithm 2 Betweenness Centrality Algorithm (Unweighted Networks) [11:p. 5]

Input
A directed network with nodes N = 1, . . . , n and arcs E = (i, j), i, j ∈ N .

Data
Q: queue for nodes. S: stack for nodes. dist(v): distance from source. Pred(w): list
of predecessors on shortest paths from source. σ(v): number of shortest paths from
source to node v. δ(v): dependency of source on node v.

Output
The betweenness centrality CB(i) for each node i.

Algorithm
For s ∈ N ,

Single-Source Shortest Paths Problem
Initialization

For w ∈ N , Pred(w)← empty list
For t ∈ N , dist(t)←∞; σ(t)← 0
dist(s)← 0; σ(s)← 1
Enqueue s→ Q

While Q not empty
Dequeue v ← Q; Push v → S
For each w such that (v, w) ∈ E
Path Discovery

if dist(w) =∞
dist(w)← dist(v) + 1
Enqueue w → Q

Path Counting
if dist(w) = dist(v) + 1
σ(w)← σ(w) + σ(v)
Append v → Pred(w)

Accumulation
For v ∈ N , δ(v)← 0
While S not empty

Pop w ← S
For v ∈ Pred(w)

δ(v)← δ(v) + σ(v)
σ(w)

(1 + δ(w))

If w 6= s, CB(w)← CB(w) + δ(w)
Next s.

40

2.2.3.4 Clustering Coefficient.

The clustering coefficient is a measure of how many neighbors of a node are neighbors

themselves [64]. This measure can be thought of as a localized version of betweenness,

indicating the control a node has over its immediate neighbors [53]. Let nN(i) denote the

number of neighbors of node i and nCN(i) be the number of the neighbors of node i that

are connected. Then the clustering coefficient Ccl(i) for node i is the ratio of the number of

neighbors that are connected to the number of possible pairs of neighbors, [53, 64]

Ccl(i) =
2nCN(i)

nN(i)(nN(i)− 1)
, (2.59)

for undirected networks and

Ccl(i) =
nCN(i)

nN(i)(nN(i)− 1)
, (2.60)

for directed networks. The clustering coefficient is not standardized since it is already

bounded between 0 and 1. The clustering coefficient is 0 when a node has only one neighbor

or there are no neighbors that are connected. The value is 1 when every neighbor of a node

i is connected to every other neighbor of node i.

The clustering coefficient for each node in the networks in Figure 4 are listed in Table 12.

Since nodes 1, 5, and 6 have neighbors with no connections between them in each of the

networks, the clustering coefficient of each of these nodes is 0 in all three example networks.

2.2.3.5 Summary.

The nodal SNA measures are summarized in Table 13. The degree measures (out-, in-,

and degree centrality) indicate the amount of activity of a node in the network. The indepen-

dence of a node is indicated by the closeness measures (out-, in-, and closeness centrality).

41

N1 N2 N3

Node (i) Ccl(i) Ccl(i) Ccl(i)
1 0 0 0
2 0.333 0.167 0.167
3 1 0.5 0.5
4 0.333 0.167 0.167
5 0 0 0
6 0 0 0

Table 12. Clustering coefficient measures for nodes of networks in Figure 4

The distance-type measures (betweenness centrality, out- and in-information centrality, and

clustering coefficient) indicate the potential control a node has in the network. Finally, an

indicator of the influence of a node is given by the eigen-type measures (eigenvector and

in-eigenvector centrality, Katz centrality, PageRank and in-PageRank).

42

Table 13. Nodal measures from SNA

Measure Equation Reference Explanation

degree centrality
CD(i) = d(i) [63:pp. 178-179]

Indicate the amount

of activity of a node

in the network.

C ′D(i) =
d(i)

n− 1

out-degree centrality
CD+(i) = d+(i) [53:p. 169]

C ′D+(i) =
CD+(i)

n− 1
=
d+(i)

n− 1

in-degree centrality
CD−(i) = d−(i) [53:p. 169]

C ′D−(i) =
CD−(i)

n− 1
=
d−(i)

n− 1

betweenness centrality
CB(k) =

∑
i6=k 6=j∈V

nij(k)

nij
[10:p. 3]

Indicate the control

a node has in the

network.C ′B(k) =
CB(k)

(n− 1)(n− 2)
[53:p. 190]

Continued on next page

43

Table 13 – Continued from previous page

Measure Equation Reference Explanation

closeness centrality
CC(i) =

1∑
j∈V dN(i, j)

=
1

td(i)
[63:pp. 184–185]

Indicate the

independence of a

node.

C ′C(i) = (n− 1)CC(i)

out-closeness centrality CC+(i) =
1

σ+(i)
[61:p. 92]

radiality C ′C+(i) = (n− 1)CC+(i)

in-closeness centrality CC−(i) =
1

σ−(i)
[61:p. 92]

integration C ′C−(i) = (n− 1)CC−(i)

44

2.2.4 Network Measures - SNA.

There are several network measures from SNA that are useful. Some are the same as

those reviewed in the graph theory section and are not repeated. Average degree is the same;

the Wiener index is also termed the dispersion index within the SNA literature [36].

2.2.4.1 Beta Index.

The beta index of a network is the ratio of the number of nodes n in the network to the

number of edges m. The beta index measures a network’s complexity [36]. The beta index

is

β(N) =
n

m
. (2.61)

A planar network (a network in which intersecting arcs require a node) can not have a beta

index larger than 3, while non-planar networks can have the beta index approach infinity [36].

2.2.4.2 Alpha Index.

The alpha index of a network is the ratio of the number of cycles in the network to the

maximum number of cycles possible. The alpha index measures a network’s redundancy [36].

The alpha index of a connected network is

α(N) =
m− n+ 1

n(n−1)
2
− (n− 1)

. (2.62)

An alpha index of 0 indicates that the network has a tree structure and the removal a single

arc would disconnect the network, while a value of 1 indicates that the network is completely

connected (every pair of nodes is connected) [36].

45

2.2.4.3 Density / Gamma Index.

The density or gamma index of a network is the ratio of the number of arcs in the

network to the maximum number of arcs possible. The density or gamma index measures

a network’s interconnection or availability of alternate routes [36, 63]. Because a directed

network depends on the order of the node pairs, there are twice as many possible arcs. The

gamma index for an undirected and a directed network are [63]

gammau(N) =
2m

n(n− 1)
=

d

n− 1
, (2.63)

gammad(N) =
m

n(n− 1)
. (2.64)

The gamma index indicates the saturation of the network in terms of arcs; a value of 0

indicates there are no arcs and a value of 1 indicates that all possible arcs are included in

the network (all node pairs are connected) [36, 63].

2.2.4.4 Average Clustering Coefficient.

The average clustering coefficient is the average of the clustering coefficient across all

nodes [53],

Ccl(N) =

∑
i∈V Ccl(i)

n
. (2.65)

Average clustering coefficient measures the “cliquishness” of a group of nodes [64].

Each of the SNA network measures for the networks in Figure 4 is given in Table 14. The

gamma index for N1 is computed using (2.63), while the density for N2 and N3 is computed

using (2.64). These measures do not have any special treatment (other than the differential

between directed and undirected networks) for flow networks as some of the graph theoretic

measures had.

46

Network (N) β(N) α(N) γ(N) Ccl(N)

N1 1.167 0.200 0.467 0.278
N2 1.500 0.400 0.300 0.139
N3 1.167 0.200 0.233 0.139

Table 14. SNA network measures for networks in Figure 4

2.2.4.5 Summary.

The network SNA measures are repeated in Table 15. The complexity, redundancy,

interconnectedness, and cliquishness of a network are indicated by the beta index, alpha

index, density and average clustering coefficient, respectively.

47

Table 15. Network measures from SNA

Measure Equation Reference Explanation

beta index β(N) =
n

m
[36:p. 120] Indicates the com-

plexity of the net-

work.

alpha index α(N) =
m− n+ 1

n(n−1)
2
− (n− 1)

[36:p. 120] Indicates the redun-

dancy of the network.

density γu(N) =
2m

n(n− 1)
=

d

n− 1
(undirected) [36:p. 120]

Indicates the

interconnectedness

of the network.
gamma index γd(N) =

m

n(n− 1)
(directed) [63:p. 101,129]

average clustering coefficient Ccl(N) =

∑
i∈V Ccl(i)

n
[53:p. 204] Indicates the

cliquishness of

the network [64].

48

2.3 Optimization Models

Figure 6. Research Framework: Optimization Model Literature

This section summarizes pertinent literature in the fields of network interdiction, provid-

ing a foundation for the models approach of the research framework, as depicted in Figure 6.

Furthermore, this section reviews a number of papers that apply interdiction tasks in network

interdiction models.

2.3.1 Network Interdiction.

Network interdiction has been studied in many application areas.

The study of network interdiction began with military applications: disruption of
the flow of enemy troops. More recent applications include infectious disease con-
trol, counter-terrorism, interception of contraband and illegal items such as drugs,
weapons, or nuclear material, and the monitoring of computer networks [15:p.
1].

A common approach to modeling network interdiction is to formulate the problem in terms

of a two-stage strategic game between two actors acting sequentially: the first seeking to

disrupt, destroy, divert, or delay the capabilities of a network, and the second seeking to

utilize the remaining network.

49

The bilevel programming problem (BLPP) is the mathematical formulation of a non-

cooperative game between two players who each take a turn in a game in which each player

has all information about the problem. In the economic literature, this is denoted as a

Stackelberg game. The mathematical formulation [5:p. 6] of the BLPP is

min
x∈X

F (x, y) (2.66)

s.t. G(x, y) 5 0,

min
y∈Y

f(x, y),

s.t. g(x, y) 5 0.

As can be seen in Equation (2.66), there is an optimization problem within the constraints.

The second optimization problem, min
y∈Y

f(x, y), is typically called the lower-level, inner, or

follower’s problem. In this research these terms are used interchangeably. The first opti-

mization problem, min
x∈X

F (x, y), called the upper-level, outer, or leader’s problem, and is a

minimization problem in the familiar notation of a mathematical programming problem. If

the follower’s problem has multiple optimal solutions, there will be uncertainty as to the

definition of the minimization meaning. In other words, traditional minimization is valid

only when the lower-level problem is uniquely determined. [22:p. 2] Additional constraints

can be added to the formulation to improve realism.

The inherent hierarchy in the game implies perfect information; the decision of the leader

will affect how the follower decides. Consider a simple production facility. Suppose the

facility purchases material from one out of several choices of producers to make a single

product that can be manufactured on one of a set of several machines. The leader in the

BLPP that models the overall plant costs would be the management, which seeks to minimize

the cost of material. The follower, based on the material purchased by management, makes

the decision as to which machine to utilize to minimize the operating costs for manufacturing

50

the item. This simple example illustrates the hierarchical structure that can be modeled

using bilevel programming. Based on this hierarchical structure, the leader-follower order

is important and logical: switching the order would not make sense. The leader makes the

optimal decision with the assumption that he or she has perfect knowledge of the follower’s

process. In other words, he or she will take into consideration the possible costs incurred

based on the decision. An important characteristic of this type of problems is that the

follower has autonomy and makes his own decisions taking into account the leader’s decision.

Thus, bilevel programming can be applied to a wide variety of applications that involve a

hierarchical relationship. Some areas in which this arises are in transportation planning,

price planning, network interdiction and infrastructure defense.

Wood [68] formulated a bilevel program to determine the arcs that should be destroyed to

minimize the maximal flow through a network. The leader (attacker) seeks to cut arcs with

the greatest impact to the network flow subject to a resource constraint, while the follower

(defender) seeks to maximize the flow across the network. The problem formulation presented

by Wood is slightly modified by explicitly listing the leader problem as an optimization

problem to more clearly illustrate the bilevel structure. The objectives and constraints are

unchanged. This model formulation, the bilevel maximum flow network interdiction model

51

(BMFNI), is: [68:p. 7]

min
∑

(i,j)∈A

γij (2.67)

s.t.
∑

(i,j)∈A

rijγij ≤ R

γij ∈ {0, 1}, ∀(i, j) ∈ A

max xts

s.t.
∑
j

xij −
∑
j

xji = 0, ∀(i, j) ∈ A

∑
j

xsj −
∑
j

xjs − xts = 0

∑
j

xtj −
∑
j

xjt + xts = 0

xij − uij(1− γij) ≤ 0, ∀(i, j) ∈ A

xij ≥ 0, ∀(i, j) ∈ A ∪ (t, s),

where γij indicates whether the arc from node i to node j is interdicted, rij is the resource

requirement to interdict the arc from node i to node j, R is the total amount of interdiction

resources available, xij is the flow on the arc from node i to node j, A is the set of directed

arcs, and uij is an upper bound on the flow (capacity) from node i to node j. In this

formulation, only arcs are eligible to be cut.

To solve the problem, Wood reformulated the follower (max-flow) problem using its dual

with the decision variable for the interdiction of arcs, γij, fixed. The resulting model is

linearized and the product of the dual variable and the (1−γij) term replaced with βij. This

allows certain constraints to be eliminated while others become equalities. The resulting

model is an s-t cut model in which αi indicates whether node i is on the s side of the cut

(αi = 0) or the t side (αi = 1). Thus, an equivalent to the BMFNI model is the arc-only

52

network interdiction (AONI) model: [68:p. 6]

min
∑

(i,j)∈A

uijβij (2.68a)

s.t.
∑

(i,j)∈A

rijγij ≤ R (2.68b)

αi − αj + βij + γij ≥ 0, ∀(i, j) ∈ A (2.68c)

αs = 0, (2.68d)

αt = 1, (2.68e)

αi ∈ {0, 1}, ∀i ∈ N (2.68f)

βij, γij ∈ {0, 1}, ∀(i, j) ∈ A. (2.68g)

The value of βij indicates whether the arc from node i to node j is in the arc cut set but

is not destroyed, i.e. flow remains uninterrupted. When βij = 1, arc (i, j) is in the cut set,

but flow continues along the arc. When the value of γij is 1, the arc from node i to node

j is destroyed, i.e. there is no flow along the arc. All other βij and γij are 0. Thus, the

model identifies a cut set and selects arcs to destroy leaving the smallest remaining capacity

possible given the resource constraints. The objective (2.68a) minimizes (attacker/leader’s

goal) the maximum (operator/follower’s goal) flow across the network after the interdiction

occurs. Constraint (2.68b) ensures that the follower does not exceed the resources available

for indicting arcs. Constraint (2.68c) ensures that any arcs along the cut set are interdicted

at most once. The source nodes are forced to the s side of the cut by Constraint (2.68d),

while the sink nodes are forced to the t-side by Constraint (2.68e). Finally, the decision

variables α, β and γ are all binary as indicated in Constraints (2.68f) and (2.68g).

53

Finally, Wood proved that the network interdiction problem where the attacker seeks to

disrupt the (defender’s) maximal flow through a capacitated network is NP-hard. The basic

model developed is general so further variants of the problem can be examined [68].

Each of the network interdiction methods presented deal with the interdiction of arcs in

the network. Kennedy et al. [45] develop a BLPP that model network interdiction from the

standpoint of interdicting nodes rather than arcs. The leader is the network operator (or

defender) who seeks to maximize flow through a capacitated network. The follower is the

attacker whose objective is to remove nodes (and their outgoing arcs), so as to minimize

the maximal s-t flow. The solution approach was to reformulate the follower problem so

all arcs flowing out of targeted nodes are destroyed and transform the entire problem to

a mixed integer problem. The node interdiction model was tested on randomly generated

networks to determine the improvement in interdicting arcs rather than using the traditional

node splitting technique to create dummy arcs. Finally, the node interdiction model solved

a realistic communications network interdiction problem.

The network interdiction models reviewed in this section present the foundational frame-

work that is extended in the literature. There have been numerous works extending this

framework, however, the network interdiction foundation with the goal of destroying or dis-

rupting arcs or nodes is established with the literature presented.

2.3.2 Network Diversion.

Within the literature, there are a number of papers that address the network diversion

problem. However, these models determine the interdiction benefit of nodes and arcs to

channeling by destroying arcs, rather than diverting as defined in joint interdiction doctrine.

Because the terms used are similar, this section presents a detailed and comprehensive review

of network diversion.

54

The network diversion problem is a type of network interdiction problem where the

leader attacks a network by destroying arcs to channel flow to at least one member of a set

of predetermined arcs. The network diversion problem was first posed in the open literature

in 2001 by Curet [20]. The goal of the problem is to produce a minimum source-terminus

cut so that any remaining source-terminus paths includes at least one arc that is included

in the diversion set, a specified subset of arcs. Consider a directed graph G(N,E) where

N denotes the set of nodes and E denotes the set of edges (arcs). The network diversion

problem is formulated as an integer programming formulation with three types of binary

decision variables: zij indicates whether arc (i, j) is included in the cut (zij = 1, 0 otherwise),

yi indicates whether node i is on the source side of the cut (yi = 0) or the terminus side

(yi = 1), and xij indicates whether flow traverses arc (i, j) (xij = 1, 0 otherwise). The

diversion set is denoted D and consists of arcs only. Let D denote the set of arcs in E but

not in D. Finally, the parameter ε defines the importance of diverting relative to interdiction

55

costs. The network diversion formulation follows [20:p. 38]:

min
∑

(i,j)∈D

(cijzij) + ε
∑

(i,j)∈D

xij (2.69a)

s.t. yi − yj + zij ≥ 0, ∀(i, j) ∈ E, (2.69b)

yi ∈ {0, 1}, ∀i ∈ N, (2.69c)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (2.69d)

yt = 1, ys = 0, (2.69e)∑
j:(i,j)∈E

xij −
∑

k:(k,i)∈E

xki = bi, ∀i ∈ N, (2.69f)

xij ∈ 0, 1, ∀(i, j) ∈ E, (2.69g)∑
(i,j)∈D

zij ≥ 1, (2.69h)

xij + zij ≤ 1, ∀(i, j) ∈ D, . (2.69i)

The objective function (2.69a) has two terms: the first minimizes the cut set cost and the

second weights the importance of flow diversion along the shortest path through the diversion

set. Constraints (2.69b)-(2.69e) are the formulation to determine a minimum cut, which is

the dual of the maximum flow problem [6:p. 598]. Constraints (2.69f)-(2.69g) along with

defining bi to conserve flow (bs = 1, bt = 1, bi = 0,∀i 6= s, t) ensure a single source-terminus

path exists having a flow value of 1. Constraint (2.69h) forces the selected cut set to include

at least one arc in the diversion set. Finally, Constraint (2.69i) allows the model to use

arcs in the diversion set for both cutting the source from the terminus and appearing on the

source-terminus path.

Curet [20] then uses Lagrangian relaxation to solve the network diversion in real time.

The Lagrangian relaxation algorithm moves the linking constraint (2.69i) to the objective.

The algorithm solves the Lagrangian problem with the weight of the linking constraint set

56

to 0. If the solution is such that the linking constraint is feasible, the solution is optimal.

Otherwise, a subgradient (and step-length) is used to update the Lagrange multiplier. The

algorithm iterates until an optimal solution is determined. The Lagrangian algorithm is

implemented in an enumeration framework (determining all cut sets [21]) to solve the network

diversion problem and the results show that the algorithm indeed provided solutions in real

time.

Cintron-Arias et al. [14] used a similar model formulation except that they examined the

case of a single arc in the diversion set (arc (v, w)). They formulated a heuristic approach

to solve the network diversion problem. The heuristic determines the shortest s-v path and

the shortest w-t path separately. The minimum cut across the network is then determined

while disregarding arcs on these paths. Next, the heuristic iterates through each arc on the

paths selected in the first step and removes the arc from inclusion in the shortest s-v or w-t

path and updates the shortest path and associated minimum cut. The authors recommend

considering shortest cardinality paths as well as paths with smallest cost-to-path-length

ratios. The heuristic found the optimal solution in some test cases. The authors do not

mention the time to complete the heuristic for the problems tested.

Erken [26] solved the network diversion problem using a branch-and-bound framework.

The diversion arc (equivalent to the single arc (v, w) of Cintron-Arias et al. [14]) is forced to

be part of the minimum cut. If the cut identified is minimal, the solution is optimal for the

diversion problem. Otherwise, branching occurs by including and excluding an arc in the

cut set. The algorithm continues until the minimum cut set containing the diversion edge is

located.

Cullenbine et al. [19] strengthen the formulation for a diversion set with a single edge

(arc (v, w)) by taking advantage of the fact that the diversion edge must be on the source-

terminus path and that the tail node of the diversion edge will be on the source side of the

cut set and the head node will be on the terminus side of the cut set. The single-commodity

57

integer formulation using the same variable names as in (2.69a) follows [19:p. 10]:

min
∑

(i,j)∈E

(cijzij) + ε
∑

(i,j)∈E

(xij) (2.70a)

s.t. yi − yj + zij ≥ 0, ∀(i, j) ∈ E, (2.70b)

ys = 0, yt = 1, (2.70c)

yv = 0, yw = 1, (2.70d)

zvw = 1, (2.70e)∑
j|(i,j)∈E

xij −
∑

j|(j,i)∈E

xji = bi, ∀i ∈ N, (2.70f)

xvw = 1, (2.70g)

zij + zji + xij + xji ≤ 1, ∀(i, j) ∈ E − (v, w)|i < j and (j, i) ∈ E, (2.70h)

zij + xij ≤ 1, ∀(i, j) ∈ E − (v, w)|(j, i) 6∈ E, (2.70i)

xij ≥ 0, ∀(i, j) ∈ E, (2.70j)

yi ∈ {0, 1}, ∀i ∈ N, (2.70k)

zij ∈ {0, 1}, ∀(i, j) ∈ E, . (2.70l)

The decision variable, xij, is not restricted to be binary in this formulation. By limiting yi and

zij to binary values, the solutions of the LP relaxation result in binary values for xij values.

Cullenbine et al. conducted extensive testing to verify the efficiency of this combination of

binary and continuous variables [19:p. 10]. In addition to the flow conservation restrictions

(bs = 1, bt = 1, bi = 0, ∀i 6= s, t), the interdiction cost for the diversion arc is 0 (cvw = 0).

The objective (2.70a) and Constraints (2.70b)-(2.70c), (2.70f), and (2.70i)-(2.70l) are as

described for (2.69a)-(2.69i). Constraints (2.70d), (2.70e), and (2.70g) are introduced since

the diversion set is assumed to contain only one arc. Finally, Constraint (2.70h) is included

to address antiparallel arcs (i.e., those arcs that have flow in opposite directions between

58

the same pair of nodes). The authors’ extensive testing indicates that requiring only the

yi decision variable to be binary while the xij- and yi-variables can take non-zero positive

real values. A value of ε < 1
|N | ensures the penalty is less than 1 and that the shortest path

problem does not preempt the minimum cost cut.

Cullenbine et al. [19] then formulate a two-commodity formulation consisting of two

subpaths. One commodity flows from the source to the tail node in the single diversion edge

(arc (v, w)) along the first subpath, while the second commodity flows from the head node

of the diversion arc to the terminus. The stronger formulation, which essentially finds a

shortest s-v path, a shortest w-t path, and a minimum s-t cut that includes the diversion

edge and no arcs along the shortest paths, follows [19:pp. 10-11]. The flow decision variables

are updated to account for each of the commodity paths: xSij indicates whether flow traverses

arc (i, j) along the shortest s-v path (xSij = 1, 0 otherwise) and xTij indicates whether flow

59

traverses arc (i, j) along the shortest w-t path (xTij = 1, 0 otherwise).

min
∑

(i,j)∈E

(cijzij) + ε
∑

(i,j)∈E

(xSij + xTij) (2.71a)

s.t. yi − yj + zij ≥ 0, ∀(i, j) ∈ E, (2.71b)

ys = 0, yt = 1, (2.71c)

yv = 0, yw = 1, (2.71d)

zvw = 1, (2.71e)∑
j|(i,j)∈E

xSij −
∑

j|(j,i)∈E

xSji = bSi , ∀i ∈ N, (2.71f)

∑
j|(i,j)∈E

xTij −
∑

j|(j,i)∈E

xTji = bTi , ∀i ∈ N, (2.71g)

xSvw = 0, xTvw = 0, (2.71h)

zij + zji + xSij + xSji + xTij + xTji ≤ 1, ∀(i, j) ∈ E − (v, w)|i < j and (j, i) ∈ E,

(2.71i)

zij + xSij + xTij ≤ 1, ∀(i, j) ∈ E − (v, w)|(j, i) 6∈ E, (2.71j)

xSij, x
T
ij ≥ 0, ∀(i, j) ∈ E, (2.71k)

yi ∈ {0, 1}, ∀i ∈ N, (2.71l)

zij ≥ 0, ∀(i, j) ∈ E, . (2.71m)

The explanations for the model are the same as those given for the model given in (2.70a)-

(2.70l). Since the path from the source to the diversion arc is on the source-side of the cut

set and the path from the diversion arc to the terminus is on the terminus-side of the cut

60

set, the following two inequalities will hold:

∑
j|(i,j)∈E

xSij + yi ≤ 1, ∀i ∈ N − t, (2.71n)

∑
j|(i,j)∈E

xTij − yi ≤ 0, ∀i ∈ N − s, . (2.71o)

Computational results indicate that the model, with these inequalities, solve problem in-

stances an order of magnitude faster than the the original model (2.69a)-(2.69i). The authors

conclude stating that the model (2.71a)-(2.71o) should be the standard network interdiction

model based on its tight linear programming relaxation.

2.3.3 Network Disruption.

In practice, whenever an object is targeted, there is a chance that the attack was only

partially successful. Diminishing the capacity of the network based on a probability of dam-

age is more realistic than assuming the target is destroyed. One pertinent method addresses

network interdiction when the targeted arcs are not destroyed, but rather disrupted.

Israeli and Wood [42] develop a BLPP to solve a shortest-path network interdiction

problem. The problem is formulated as a BLPP where the leader (or attacker) increases

the arc lengths of targeted arcs to maximize the network’s shortest path, i.e. he or she

seeks to delay the time of traversing the network. The follower is the network operator who

directs flow through the shortest path on the network. Their formulation for maximizing

the shortest path follows. The model is slightly modified to illustrate the bilevel structure

and with arcs denoted as an (i, j) pair rather than using a single index k, as was used in the

61

original formulation [42:p. 99].

max xij (2.72a)

s.t.
∑

(i,j)∈E

rijxij ≤ R, (2.72b)

xij ∈ 0, 1, ∀(i, j) ∈ E, (2.72c)

min
∑
k

(cij + dijxij)yij (2.72d)

s.t.
∑
j

yij −
∑
j

yji = 0, ∀i ∈ N − {s, t} (2.72e)

∑
j

ysj −
∑
j

yjs = 1, (2.72f)

∑
j

ytj −
∑
j

yjt = −1, (2.72g)

yij ≥ 0, ∀(i, j) ∈ E. (2.72h)

The decision variable of the leader is xij which indicates whether arc (i, j) is interdicted.

The follower determines the shortest path over the network via the variable yij which takes a

value of 1 if the arc is on the shortest path after interdiction and 0 otherwise. The follower’s

problem, consisting of (2.72d)-(2.72h) is the standard shortest path formulation after taking

into account the new arc distances. The leader is limited toR units of resource for interdicting

arcs, with the interdiction cost per arc denoted by rij. The problem is solved using Benders

decomposition with supervalid inequalities for the master (upper) problem [42]. Examples

show the improvement of solutions using the decomposition algorithm over the results in the

problem using direct solution techniques.

62

2.4 Summary

This chapter reviewed literature pertinent to this research. First, a number of graph

theoretic and social network analysis measures were reviewed that may offer insights into

the interdiction benefit of network models. Finally, optimization models whose solutions

identify critical nodes and/or arcs to network interdiction were examined. In the following

chapters, the foundational work highlighted in this chapter will be extended.

63

III. Measures After Destroying Nodes

3.1 Introduction

Figure 7. Research Framework: Measures After Destroying Nodes

The research framework is depicted in Figure 7 with portions faded to highlight the focus

of this chapter. The measures approach begins with a network and uses nodal measures to

assess the potential benefit of each for interdiction. In this chapter, a network algorithm is

developed to readily compute and/or update measures when a node is destroyed. The focus

is the ‘destroy’ interdiction task within the measures approach of the research framework,

as depicted in Figure 7. In general, planners favor targeting nodes rather than arcs for

interdiction operations against infrastructures. Within social networks, nodes are also more

frequently targeted since nodes typically represent people and arcs, relationships. Therefore,

in this chapter it is assumed that only nodes are targeted for destruction.

3.2 Geodesics and Related Measures

This section develops and demonstrates the utility of storing information about the

geodesics, i.e., shortest path lengths, between all node pairs in a network of interest to

64

enable more rapid calculation of selected node and network measures. Knowledge of the

geodesics between all node pairs in a network is required to compute a number of measures

that characterize the network. A priori processing of this information enables faster subse-

quent computations of measures that depend on the geodesics. Several algorithms exist that

compute a matrix of geodesics for weighted and unweighted networks. Analysis of measure

computations on randomly generated networks, both with and without the proposed stored

information, are compared and contrasted to demonstrate the importance of preprocessing

and retaining the geodesic information.

The reduction in calculation time via preprocessing the geodesics enables real-time net-

work analysis. Consider a situation in which an enemy’s social network is known a priori

and a reconnaissance drone has been tracking a high-priority enemy personnel target, e.g.,

terrorists, drug dealers, jihadists, or others. During the mission, the drone observes a group

of additional known enemy personnel (whose whereabouts were unknown until the observed

meeting) entering three vehicles. Unfortunately, the assets available to a decision-maker

allow for the targeting of only one vehicle. (The term targeting refers to either lethal or

nonlethal actions such as detailed observation, signals collection, or possibly destruction.)

In the case when the distances in the social network represent weights, rapid analysis of the

social network (for which the geodesic matrix is known) allow the decision maker to target

the vehicle that yields the largest desired effect. It may be more beneficial to target one

of the two vehicles not carrying the original primary high-value target. By computing the

measures using the geodesic matrix, such rapid analysis enables target selection within a

narrow time window for a required decision, e.g., before an intelligence feed is lost or the

vehicles disperse.

65

3.2.1 Nodal Measures Related to Geodesics.

For reference, consider a network N . The network consists of a set V of vertices or nodes

in which each of the n nodes is indexed i = 1, . . . , n. The set of arcs is denoted E and

individual arcs are identified by pairs (i, j), where i, j ∈ V . Let G be the geodesic matrix

with entries gij to denote the length of the geodesic from node i to node j in the network.

There exist several nodal and network measures for which calculations require geodesic

information. A brief explanation of several of the measures that require such information

follows. A subset of the measures are specific to individual nodes in a network. These nodal

measures are listed in Table 16 along with the respective equation (in terms of the geodesic

matrix G) for their computation and references from the literature. Likewise, network mea-

sures which are representative of the entire network and require the geodesic matrix are

provided in Table 17.

The eccentricity e(i) of node i is the maximum of the geodesics from node i to all other

nodes. The eccentricity of i is the length of the shortest path from node i to the node that is

the farthest distance away. For undirected, connected networks, each node will have a finite

eccentricity [65:p. 71].

The total distance td(i) of node i in a network is the sum of the length of the geodesics

from node i to all other nodes in the network [12]. In a social network, the total distance

may indicate how quickly information from an individual represented by a node can reach

all others, where it is assumed people with smaller total distance measures reach everyone

more quickly. The total distance is sometimes referred to as the status of the node [13]. A

node closest to all other nodes in the network has status.

The closeness centrality of a node CC(i) measures the centrality, i.e., a measure of how

central a node is within the network, of a node based not only on its immediate neighbors, but

also on the distance in the network from all other nodes, thereby accounting for the geodesics

to all non-adjacent nodes as well. It is computed as the inverse of the total distance measure

66

Measure Equation Reference

eccentricity
e(i) = max(max

j∈V
gij,max

j∈V
gji) (directed) [46:p. 381]

e(i) = max
j∈V

gij = max
j∈V

gji (undirected) [65:p. 71]

total distance
(transmission)

td(i) =
∑
j∈V

gij [13:p. 16]

closeness
centrality

CC(i) =
1∑

j∈V

gij
=

1

td(i) [63:pp. 184–185]

Table 16. Nodal measures related to geodesics

of a node. The closeness centrality of a node is also called radiality, and it measures the

extent of a node’s reach into the network [61].

3.2.2 Network Measures Related to Geodesics.

The nodal measures are utilized to identify characteristics of every node. Network mea-

sures on the other hand, are utilized to identify characteristics of the entire network or

selected nodes as they relate to the entire network.

The diameter of a network diam(N) is the longest of the (i, j)-geodesics, where i 6= j, for

all possible node combinations. It is computed as the maximum of the nodal eccentricities

of a network [12, 65].

The radius of a network rad(N) is the length of the minimum geodesic in the net-

work [65:p. 71]. It is computed as the minimum of the nodal eccentricities.

A peripheral node of a network is a node that has the largest eccentricity. In other words,

the peripheral nodes are those nodes with their eccentricity equal to the diameter of the

network [13, 12].

A central node of a network is a node that has the smallest eccentricity, i.e., its eccentricity

is equal to the radius of the network.

67

Measure Equation Reference

diameter diam(N) = max
i∈V

e(i) [65:p. 71]

radius rad(N) = min
i∈V

e(i) [65:p. 71]

peripheral nodes P (N) = {i|e(i) = diam(N)} [13:p. 16]

central nodes C(N) = {i|e(i) = rad(N)} [12:p. 16]
[65:p. 72]

medial nodes M(N) = {i|td(i) = min
j∈V

td(j)} [13:p. 16]

Wiener index
(transmission)

w(N) =
∑
i,j∈V

gij =
∑
i∈V

td(i)
[49:p. 268]
[55:p. 2]
[65:p. 72]

average distance w(N) =
w(N)

n(n− 1)
[65:p. 72]

Table 17. Network measures related to geodesics

A medial node of a network is the node with the minimum total distance to all other

nodes in the network [13].

Closely related to the medial nodes of a network is the Wiener index or the transmission

of the network w(N). The sum the geodesics between all pairs of nodes in a network is

the transmission of the network [55]. This quantity is also known as the Wiener index.

(Harry Wiener showed that this quantity is correlated with paraffin’s boiling point [66]). An

equivalent definition of the Wiener index is sum of the total distances for each node in the

network.

The average distance in the network w(N) may be more intuitive for analysis. Since the

average is the total of all distances divided by the possible number of pairs, the use of either

the Wiener index or average distance is equivalent for a given network. However, the use

of the average distance scales this network measure and enables the comparison of different

sized networks.

68

3.2.3 All Geodesics Algorithms.

Implementing an algorithm to determine all geodesics for all node pairs makes the cal-

culations of these measures tractable. There exist a number of algorithms for determining

the geodesics between all node pairs in a network. Three such algorithms are considered:

the Floyd-Warshall (F-W) Algorithm, the Breadth First Search (BFS) Algorithm, and a

Repeated Dijkstra’s (RD) Algorithm implemented using heaps.

In each of these algorithms, a geodesic matrix is computed, where the value of element

(i, j) represents the geodesic length from node i to node j and is undefined (or set to equal

to machine infinity for practical implementation) if there exists no (i, j) path. The term

geodesic matrix is used to avoid confusion with the distance matrix D, where the value of

element (i, j) represents the length of the arc from node i to node j. Accepted practices

indicate that the F-W algorithm is appropriate for dense, weighted networks whereas the RD

algorithm is more suited to sparse, weighted networks [8]. Meanwhile, the BFS algorithm is

typically recommended for unweighted networks.

The Floyd-Warshall (F-W) Algorithm (denoted Algorithm 3) identifies the geodesic dis-

tance between all node combinations. The implementation presented is based on the algo-

rithmic statement in Ahuja et al. [3:p. 148]. A contribution of the algorithm is its induction

step that utilizes dynamic programming to iteratively compute the geodesic lengths. This

insight is attributed to Warshall [62], whereas the algorithm’s present form is attributed to

Floyd [28]. The F-W Algorithm, as outlined in Algorithm 3, runs in O(n3) time because

it implements n iterations, each of which conducts n2 compare-and-update operations [3:p.

148]. The F-W algorithm analyzes both directed and undirected networks. The distance

matrix utilized in the F-W Algorithm may be weighted or unweighted with no material im-

pact on running time. To consider an unweighted distance matrix utilizing this algorithm,

set the length of each arc to 1 or, equivalently, use the adjacency matrix as a proxy.

69

Algorithm 3 Floyd-Warshall (F-W) Algorithm [3:p. 148]

Input
Directed network with nodes V = {1, . . . , n} and arcs E = (i, j), i, j ∈ V .
A: matrix of adjacency between node pairs.
D: matrix of distances between node pairs.

Output
F : matrix of geodesics between all node pairs.

Algorithm
Initialization

For i, j ∈ V , fij ←∞
For i ∈ V , fii ← 0
For (i, j) ∈ E, fij ← dij

Compute Geodesics
For k ∈ V ,

For (i, j) in V × V ,
If fij > fik + fkj
fij ← fik + fkj.

Next (i, j).
Next k.

Alternatively, consider determining the lengths of all geodesics by implementing a Re-

peated Dijkstra’s (RD) Algorithm, denoted Algorithm 4. The geodesic matrix is populated

by implementing Dijkstra’s Algorithm using each node as the source node, successively.

Thus, each iteration computes the geodesic lengths for a given row in the geodesic matrix.

The RD Algorithm as presented is based on the implementation in Ahuja et al. [3:p. 115]

and exhibits a running time of O(n3). If implemented using a Fibonacci heap, the running

time reduces to O(n2 lnn) [18:p. 530]. However, in this study the RD Algorithm was im-

plemented in MATLAB utilizing a priority queue. As in the F-W Algorithm, the distance

matrix utilized in the RD Algorithm may be weighted or unweighted (i.e., by letting D = A)

with no material impact on running time.

Both of the aforementioned all pairs geodesic algorithms can be applied to unweighted

networks. However, a more effective algorithm is available. The Breadth First Search (BFS)

Algorithm, denoted Algorithm 5, examines the adjacent nodes of a searched node to find

70

Algorithm 4 Repeated Dijkstra’s (RD) Algorithm [3:p. 115]

Input
Directed network with nodes V = {1, . . . , n} and arcs E = (i, j), i, j ∈ V .
A: matrix of adjacency between node pairs.
D: matrix of distances between node pairs.

Data
Q: priority queue for nodes.

Output
G: matrix of geodesics between all node pairs.

Algorithm
Initialization

For s, t ∈ V , gst ←∞
For s ∈ V ,
Single-Source Geodesics Problem
gss ← 0
Enqueue s→ Q with priority 0
While Q not empty

Extract minimum v ← Q
For each w such that (v, w) ∈ E
d = gsv + dvw
if gsw > d
gsw ← d
If w ∈ Q

Enqueue w → Q with priority d
Else

Decrease priority of w ∈ Q to d
Next s.

possible geodesics. The BFS algorithm is very effective for unweighted networks because

the arcs to each adjacent node are in the geodesic from the source. The implementation

in Algorithm 5 is slightly modified from the presentation of Cormen et al. [18:p. 470].

Differences include utilizing a queue rather than coloring the nodes, implementing a loop

for each node (as in the RD Algorithm) to obtain the geodesic matrix, and mirroring the

notation employed in Algorithms 3 and 4. The running time of the BFS Algorithm for all

nodes is O(n2 +nm), where m is the number of arcs in the network [18:p. 470]. The terms n2

71

Algorithm 5 Breadth First Search (BFS) Algorithm [18:p. 470]

Input
Directed network with nodes V = {1, . . . , n} and arcs E = (i, j), i, j ∈ V .
A: matrix of adjacency between node pairs.

Data
Q: queue (FIFO) for nodes.

Output
H: matrix of geodesics between all node pairs.

Algorithm
Initialization

For s, t ∈ V , hst ←∞
For s ∈ V ,
Single-Source Geodesics Problem
hss ← 0
Enqueue s→ Q
While Q not empty

Dequeue v ← Q
For each w such that (v, w) ∈ E

if hsw =∞
hsw ← hsw + 1
If w ∈ Q
Enqueue w → Q

Next s.

and nm respectively represent the effort to initialize the geodesic matrix and the successive

implementation of n iterations, in which at most m arcs in the network are examined.

Of note, predecessor nodes can be maintained to generate the geodesics using straight-

forward modifications to each of Algorithms 3, 4, and 5. The modifications necessary for

such changes are included in the respective references.

3.2.4 Analysis of Measure Computations.

In the application of Social Network Analysis, many nodal and network measures can be

computed using functions encoded within software tools. This analysis utilizes two suites of

functions for network analysis. First, a suite of MATLAB functions was produced at MIT

72

and is labeled the MIT Toolbox. It was designed “for someone who wants to start hands-on

work with networks fairly quickly. . . and compute common network theory metrics” [32]. The

MIT Toolbox was hosted on MIT web servers until 2011, and it now resides online at Octave.

Alternatively, the NetworkX package is a suite of functions encoded in the Python language

“for the creation, manipulation, and study of the structure, dynamics, and functions of

complex networks” [38]. This package is hosted online on Github.

To demonstrate the utility of retaining and storing geodesic information and for refer-

ence, the nodal and network measures in Tables 16 and 17 are computed assuming that the

geodesic information is not determined in advance. Subsequently, the geodesic information

for each network considered is computed between all node pairs using both Algorithm 3

and Algorithm 4 for weighted networks and Algorithm 3 and Algorithm 5 for unweighted

networks. The nodal and network measures in Tables 16 and 17 are then calculated using

the retained geodesic information from each of the algorithms. The values of the measures

and their respective computation times are stored for further comparison and analysis over

a battery of test instances comprised of different network structures, sizes, and densities.

The calculation of geodesic-related measures is tested on three commonly utilized randomly-

generated undirected network structures: Erdős-Rényi networks, Barabási-Albert networks,

and Watts-Strogatz networks as described in Appendix A.

The parameters of the random networks generated to test the MIT Toolbox are listed

in Table 18. For each of three network structures, 30 replicates of four test networks are

generated using the parameters indicated. The density γ of a network is given by

γ =
2m

n(n− 1)
.

Half the networks generated have density levels lower than 0.15 (low-density) and the re-

mainder have densities larger than 0.30 (higher-density). The value of the distance weight

73

Table 18. Parameter settings for 100-node random network structures

Structure Parameters Mean Density

ER

β = 0, p = 0.1 0.098
β = 1, p = 0.1 0.099
β = 0, p = 0.5 0.5
β = 1, p = 0.5 0.502

BA

ma = 2, n0 = 25 0.091
ma = 5, n0 = 25 0.136
ma = 2, n0 = 55 0.318
ma = 10, n0 = 50 0.348

WS

k = 4, p = 0.10 0.04
k = 4, p = 0.25 0.04
k = 30, p = 0.10 0.303
k = 30, p = 0.25 0.303

assigned to each arc in the network is selected using a discrete (integer) uniform distribution

with a range between 1 and 10, inclusive.

3.2.4.1 MIT Toolbox Results.

The initial computation of nodal and network measures without retaining geodesic in-

formation is straightforward for the MIT Toolbox because the functions that compute the

measures are currently encoded without utilizing retained geodesics. The MIT Toolbox

measure functions are modified for this research to consider the geodesic matrix as an input.

Finally, the time to compute each of the measures is recorded as well as the values of the

computed nodal and network measures.

The values of the measures when computed using the standard MIT Toolbox without use

of the stored geodesic matrix were compared to the modified MIT Toolbox functions that did

utilize the stored geodesic matrix. Identical results were obtained on the networks tested, so

the focus shifts to identifying the method that produces the results in the shortest amount

of time. A summary of the time to compute the measures is provided in Table 19. The

minimum, average, and maximum computation times in seconds are given when computed

74

using MATLAB version 2012a on an HP Compaq 6005 Pro with a 2.70 GHz AMD Athlon

II X2 215 processor and 4.0 GB of RAM. The results are separated by network structure

(i.e., ER, BA, or WS) and density, with LD and HD indicating lower- and higher-density

test networks, respectively.

The reported times are the total time required to compute each of the nodal and network

measures in Tables 16 and 17. The individual measure calculation times were similar because

each requires the calculation of geodesic information and uses the same computation steps to

do so. In addition to the measure computation time, the time to compute the geodesic matrix

is included as well. The “NR” column (no-retain method) shows the total of computation

times for each of the tested measures using the unmodified MIT Toolbox without retaining

the geodesic information. The next two columns provide the times for the retain methods.

Column labels “RD” and “F-W” represent the tests that utilize the RD Algorithm and

the F-W Algorithm to compute the geodesic matrix before using it to speed the measure

calculations, respectively.

The average combined time to compute all geodesic-related measures is less than 0.01

seconds when the geodesic matrix is computed in advance. Repeatedly utilizing the the MIT

Toolbox function for Dijkstra’s algorithm was not as efficient as using the F-W algorithm for

the networks tested. This is likely due to the simplicity of the MATLAB function evaluations

in the F-W algorithm when compared with those in the MIT Toolbox implementation of the

RD algorithm. Moreover, this testing indicates no tie between computation time and the

network density since the average computation times fall within fractions of a second across

all tests for the characteristics of the network structures tested.

In addition to testing the random networks with random distance weights as reported

in Table 18, analysis of the same networks using the unweighted version of the network was

conducted. The entire test for the MIT Toolbox was repeated with two changes. First, the

BFS algorithm was utilized rather than the RD algorithm. Second, instead of computing the

75

Table 19. Average computation times for weighted, 100-node random networks using MIT
Toolbox

NR RD F-W

ER

β = 0
min 47.485 4.961 0.042

mean 47.960 5.107 0.043
LD max 48.538 5.603 0.049

p = 0.1
β = 1

min 47.483 5.024 0.042
mean 47.990 5.174 0.043
max 48.695 5.642 0.055

β = 0
min 47.556 4.981 0.042

mean 48.057 5.176 0.044
HD max 48.694 5.603 0.061

p = 0.5
β = 1

min 47.518 5.015 0.042
mean 47.992 5.174 0.043
max 49.223 5.691 0.049

BA

ma = 2
min 47.330 5.015 0.042

mean 47.814 5.175 0.043
LD max 48.501 5.549 0.047

n0 = 25
ma = n0

5

min 47.380 4.982 0.042
mean 47.846 5.143 0.043
max 48.622 5.667 0.048

ma = 2
min 47.408 4.986 0.042

mean 47.904 5.164 0.042
HD max 49.772 5.607 0.046

n0 = 55, 50
ma = n0

5

min 47.244 4.988 0.042
mean 47.850 5.193 0.045
max 48.838 5.641 0.095

WS

p = 0.1
min 47.319 4.936 0.042

mean 47.845 5.160 0.043
LD max 48.443 5.465 0.055
k = 4

p = 0.25
min 47.302 4.995 0.042

mean 47.908 5.233 0.042
max 49.123 6.085 0.045

p = 0.1
min 47.425 4.946 0.042

mean 47.930 5.134 0.043
HD max 48.481 5.520 0.047

k = 30
p = 0.25

min 47.498 4.986 0.042
mean 47.936 5.150 0.043
max 48.539 5.426 0.046

76

Table 20. Computation times for unweighted, 100-node random networks using MIT Toolbox

NR BFS F-W

ER

β = 0
min 47.885 0.208 0.042

mean 48.232 0.234 0.043
LD max 48.720 0.271 0.050

p = 0.1
β = 1

min 48.147 0.211 0.042
mean 49.571 0.232 0.044
max 54.119 0.276 0.056

β = 0
min 48.106 0.682 0.042

mean 48.396 0.742 0.045
HD max 49.759 0.854 0.096

p = 0.5
β = 1

min 47.612 0.685 0.042
mean 50.942 0.750 0.043
max 59.359 0.833 0.048

BA

ma = 2
min 47.633 0.198 0.041

mean 47.983 0.218 0.043
LD max 48.695 0.262 0.048

n0 = 25
ma = n0

5

min 47.930 0.251 0.041
mean 48.516 0.275 0.043
max 50.578 0.324 0.060

ma = 2
min 47.803 0.459 0.041

mean 48.097 0.503 0.043
HD max 48.734 0.564 0.046

n0 = 55, 50
ma = n0

5

min 47.543 0.492 0.042
mean 47.765 0.548 0.043
max 48.089 0.638 0.053

WS

p = 0.1
min 47.509 0.144 0.042

mean 47.886 0.159 0.044
LD max 49.524 0.221 0.059
k = 4

p = 0.25
min 47.911 0.144 0.042

mean 49.710 0.159 0.043
max 56.072 0.182 0.049

p = 0.1
min 47.421 0.447 0.042

mean 47.660 0.490 0.042
HD max 48.033 0.549 0.046

k = 30
p = 0.25

min 48.027 0.444 0.042
mean 52.148 0.488 0.044
max 63.767 0.539 0.061

77

distance measures using the weighted value of distance, the unweighted adjacency matrix

was selected, i.e., D = A. This modification alters the interpretation of the geodesic matrix.

Matrix entries instead represent the number of links between nodes. The computation time

results are summarized in Table 20.

The average combined time to compute all geodesic-related measures is 0.01 seconds. As

expected, the modification of the distance weights to values of 1 did not change the result

that measure values were equivalent for all tests. The MIT Toolbox computation times

are examined to identify which method is preferred. The computation times corresponding

to the BFS algorithm indicate that algorithm performance depends on the density of the

matrix. Each of the higher-density network instances tested had larger computation times

as evidenced by the results reported in the HD rows of Table 20. The implementation of

the F-W algorithm is slightly faster than the BFS algorithm when executed in MATLAB

in these tests. The testing of the Python-based NetworkX package will further assess this

observation.

For the MIT Toolbox, significant improvement in the computation of geodesic related

measures can be realized by modifying the available MATLAB code. Improvements will be

realized by implementing two changes. First, implement a routine to preprocess and store the

geodesic matrix. Second, modify the geodesic related measures to perform the appropriate

matrix manipulation to compute the measure based on the geodesic matrix.

3.2.4.2 NetworkX Package Results.

The geodesic-related measures are also computed using the NetworkX package. As with

the MIT Toolbox, the values of the measures when considering both with and without

retaining information are equivalent for the networks tested, so the analysis focuses on com-

putation time. The minimum, average, and maximum computation times using Python

version 2.7 and NetworkX version 1.9.1 on the same computational platform are listed in

78

Table 21. Again, the majority of the time is used to compute the geodesic matrix for the

retain methods. The average combined time to compute all geodesic related measures is

0.03 seconds. Using the RD algorithm already embedded within the NetworkX package was

more efficient than the F-W algorithm on the lower density networks tested. This confirms

the conventional wisdom that the F-W algorithm should be used for dense networks. The

networks that have a density larger than 0.35 (i.e., ER with p = 0.5) appear to have faster

F-W times. In fact, for the networks tested, the F-W times in MATLAB were faster than

those in Python. This may be attributed to the fact that the operation is so simple for each

iteration in the algorithm that MATLAB is able to solve it very quickly.

The random networks in Table 18 were also tested using their unweighted versions. The

entire test for the NetworkX package was repeated utilizing the unweighted adjacency matrix

rather than the distance matrix, i.e., D = A. The selection of the BFS algorithm is handled

within the NetworkX code when computing the geodesic matrix for unweighted networks.

The minimum, average, and maximum computation time results for the tested networks

are summarized in Table 22. The average combined time to compute all geodesic related

measures is 0.03 seconds. Because of the internal handling of the faster BFS algorithm

in computing geodesics, the average computation times without retention were faster than

when considering the weighted networks. It is again apparent that the no-retain and BFS

algorithms are dependent on the density of the network. Meanwhile the F-W computation

times remained invariant relative to network density and/or network structure.

Figure 8 depicts the measure calculation times and algorithm completion times for all

100-node network instances tested. For the networks tested, there appears to be a density

threshold at which the F-W algorithm becomes more efficient near density level 0.4. The

figure also shows the rapid measure calculation times for NetworkX. The calculation times

that appear to be outliers are likely due to a network application running at the same time

79

Table 21. Computation times for weighted, 100-node random networks using NetworkX

NR RD F-W

ER

β = 0
min 1.353 0.125 0.386

mean 1.643 0.146 0.445
LD max 2.088 0.223 0.609

p = 0.1
β = 1

min 1.271 0.124 0.395
mean 1.439 0.136 0.444
max 1.763 0.175 0.587

β = 0
min 5.185 0.484 0.392

mean 5.891 0.554 0.441
HD max 7.633 0.734 0.614

p = 0.5
β = 1

min 5.172 0.486 0.396
mean 5.465 0.552 0.460
max 5.967 0.689 0.651

BA

ma = 2
min 1.212 0.116 0.378

mean 1.547 0.127 0.421
LD max 1.908 0.250 0.538

n0 = 25
ma = n0

5

min 1.797 0.157 0.385
mean 1.952 0.175 0.437
max 2.220 0.348 0.604

ma = 2
min 3.286 0.303 0.379

mean 3.978 0.346 0.429
HD max 4.879 0.514 0.602

n0 = 55, 50
ma = n0

5

min 3.471 0.328 0.365
mean 4.227 0.368 0.422
max 5.160 0.558 0.580

WS

p = 0.1
min 0.688 0.070 0.381

mean 0.759 0.075 0.433
LD max 0.886 0.090 0.594
k = 4

p = 0.25
min 0.709 0.073 0.385

mean 0.855 0.077 0.440
max 1.544 0.089 0.600

p = 0.1
min 3.246 0.305 0.388

mean 3.465 0.341 0.454
HD max 4.131 0.453 0.635

k = 30
p = 0.25

min 3.177 0.313 0.394
mean 3.485 0.348 0.457
max 4.575 0.506 0.696

80

Table 22. Computation times for unweighted, 100-node random networks using NetworkX

NR BFS F-W

ER

β = 0
min 0.189 0.125 0.398

mean 0.205 0.138 0.477
LD max 0.272 0.178 0.700

p = 0.1
β = 1

min 0.195 0.127 0.394
mean 0.249 0.139 0.445
max 0.351 0.182 0.559

β = 0
min 0.343 0.490 0.397

mean 0.402 0.549 0.456
HD max 0.481 0.648 0.678

p = 0.5
β = 1

min 0.342 0.489 0.393
mean 0.423 0.552 0.449
max 0.564 0.691 0.646

BA

ma = 2
min 0.168 0.116 0.381

mean 0.188 0.124 0.447
LD max 0.253 0.150 0.552

n0 = 25
ma = n0

5

min 0.192 0.157 0.392
mean 0.208 0.176 0.466
max 0.240 0.238 0.705

ma = 2
min 0.220 0.303 0.389

mean 0.245 0.338 0.459
HD max 0.341 0.425 0.641

n0 = 55, 50
ma = n0

5

min 0.245 0.330 0.371
mean 0.273 0.363 0.440
max 0.349 0.442 0.604

WS

p = 0.1
min 0.170 0.071 0.385

mean 0.182 0.077 0.434
LD max 0.219 0.098 0.616
k = 4

p = 0.25
min 0.169 0.072 0.394

mean 0.183 0.076 0.441
max 0.249 0.103 0.546

p = 0.1
min 0.252 0.307 0.394

mean 0.301 0.347 0.443
HD max 0.381 0.443 0.519

k = 30
p = 0.25

min 0.259 0.315 0.395
mean 0.303 0.356 0.449
max 0.421 0.461 0.553

81

Figure 8. Measure calculation times and algorithm completion times for all 100-node test
instances

and reducing the processing power during the calculation being completed. There is no

evidence that a specific network topology caused the longer calculation times.

Interestingly, the MATLAB F-W implementation for calculating the (weighted and un-

weighted) geodesic matrix required less time than any of the NetworkX computations for

the network instances tested. The speed with which MATLAB can complete all iterations

combined with the relatively simple evaluations in the F-W algorithm make it a good choice

when calculating a geodesic matrix in advance.

3.2.4.3 Additional Testing Results.

The NetworkX implementation of the F-W and RD Algorithms and the MATLAB F-W

implementation are further tested using 1,000-node networks that are constructed according

to the parameters listed in Table 23. Because the networks are larger and the computation

time will increase, 10 replicates of each of the 1,000-node networks are studied.

For the weighted 1,000-node tests, the minimum, average, and maximum computation

times are listed in Table 24. The combined computation time for all geodesic related mea-

sures after the geodesic matrix is computed was 0.3 seconds in MATLAB and 0.15 seconds

82

in NetworkX. The F-W algorithm implemented in MATLAB (i.e., column “F-W (M)”) con-

sistently was measured at just over one minute for each network structure. The initialization

in NetworkX iterates through each arc to update the distances. MATLAB uses the distance

matrix to initialize the values. This difference accounts for the slight variation in F-W results

for NetworkX that are not present in the MATLAB results. The smallest densities tested

(i.e., γ ≈ 0.04 for the low-density WS network structure and the low-density BA network

structure for ma = 2) appear to be near the threshold at which the NetworkX code is faster

than the MATLAB code for computing the geodesic matrix for the tested network instances.

Similar conclusions arise when testing unweighted 1,000-node networks, for which re-

sults are summarized in Table 25. The average total computation time for the MATLAB

implementation of the geodesic measures is 0.03 seconds. The NetworkX average total com-

putation time for the measures is 0.16 seconds.

The average computation times are larger than the 100-node tests; this extended length

of time required to compute the geodesic matrix necessitates its processing in advance. In

all combinations of weighted or unweighted 1,000-node network test cases and analysis using

MATLAB or NetworkX, it is clear that processing the geodesic matrix in advance enables

Table 23. Parameter settings for 1,000-node random network structures

Structure Parameters mean Density

ER

β = 0, p = 0.1 0.1
β = 1, p = 0.1 0.1
β = 0, p = 0.5 0.5
β = 1, p = 0.5 0.5

BA

ma = 2, n0 = 250 0.065
ma = 50, n0 = 250 0.137
ma = 2, n0 = 550 0.304
ma = 100, n0 = 500 0.35

WS

k = 40, p = 0.10 0.04
k = 40, p = 0.25 0.04
k = 300, p = 0.10 0.303
k = 300, p = 0.25 0.303

83

Figure 9. Measure calculation times and algorithm completion times for all 1,000-node test
instances

rapid measure computations. The unweighted computation times are very similar to their

weighted counterparts, indicating that the number of nodes and the density affect how

quickly the geodesic matrix is computed.

Figure 9 depicts the measure calculation times and algorithm completion times for all

1,000-node network instances tested. As with the 100-node test, there appears to be a density

threshold at which the F-W algorithm becomes more efficient near density level 0.35, which

is less than the density level for the smaller network instances tested. The figure also shows

the rapid measure calculation times for NetworkX. The calculation time that appears to

be an outlier is likely due to a network application running at the same time and reducing

the processing power during the calculation being completed. There is no evidence that a

specific network topology caused the longer calculation time.

3.2.5 Geodesics and Related Measures Summary.

This section addresses the importance of the effectiveness that may be achieved by prepro-

cessing the geodesic matrix. Without understanding the relationship between the geodesic

matrix and the measures related to geodesic lengths, the computation time for larger net-

84

Table 24. Computation times for weighted, 1,000-node random networks using NetworkX and
MATLAB

RD F-W F-W (M)

ER

β = 0
min 121.146 382.320 65.991

mean 126.184 388.703 66.060
LD max 130.451 393.977 66.271

p = 0.1
β = 1

min 123.210 385.858 65.973
mean 129.691 396.762 66.057
max 133.053 403.566 66.378

β = 0
min 566.333 418.471 65.867

mean 581.140 426.256 65.935
HD max 598.804 435.398 66.141

p = 0.5
β = 1

min 570.912 420.922 65.818
mean 582.497 427.996 65.946
max 591.486 437.405 66.267

BA

ma = 2
min 64.173 349.491 65.741

mean 65.960 358.467 65.866
LD max 67.562 378.050 66.058

n0 = 250
ma = n0

5

min 144.951 364.881 65.887
mean 149.589 370.526 66.016
max 154.824 374.493 66.172

ma = 2
min 304.094 373.580 65.751

mean 313.467 383.453 65.842
HD max 327.125 389.820 66.041

n0 = 550, 500
ma = n0

5

min 365.724 371.470 65.853
mean 383.806 387.133 66.425
max 404.628 397.098 70.620

WS

p = 0.1
min 52.674 367.339 65.846

mean 53.782 399.021 65.935
LD max 54.815 444.351 66.132

k = 40
p = 0.25

min 54.288 384.497 65.886
mean 55.745 411.045 65.970
max 56.544 454.563 66.237

p = 0.1
min 317.594 396.147 65.871

mean 331.351 405.417 66.114
HD max 344.783 424.043 66.499

k = 300
p = 0.25

min 324.773 397.818 65.878
mean 336.851 406.781 66.019
max 344.34 415.931 66.315

85

Table 25. Computation times for unweighted, 1,000-node random networks using NetworkX
and MATLAB

RD F-W F-W (M)

ER

β = 0
min 136.214 370.352 66.418

mean 144.521 375.051 66.535
LD max 156.744 386.072 66.845

p = 0.1
β = 1

min 128.469 382.724 66.336
mean 139.742 389.967 66.518
max 161.718 401.843 66.800

β = 0
min 636.096 407.352 66.371

mean 695.516 434.486 66.548
HD max 744.977 455.426 66.737

p = 0.5
β = 1

min 580.476 409.224 66.331
mean 602.993 427.026 66.513
max 651.726 453.788 66.837

BA

ma = 2
min 63.863 335.996 66.296

mean 65.617 360.781 66.485
LD max 67.137 400.868 66.691

n0 = 250
ma = n0

5

min 166.060 356.603 66.311
mean 187.276 369.737 66.549
max 211.089 388.562 66.982

ma = 2
min 303.462 360.831 66.245

mean 348.171 385.154 66.485
HD max 395.350 406.822 66.867

n0 = 550, 500
ma = n0

5

min 359.996 366.237 66.312
mean 373.322 391.721 66.905
max 385.173 428.940 68.751

WS

p = 0.1
min 52.924 355.507 66.369

mean 54.061 386.223 66.538
LD max 54.775 430.908 66.775

k = 40
p = 0.25

min 54.242 386.502 66.316
mean 55.906 413.888 66.517
max 56.757 461.286 67.062

p = 0.1
min 319.127 386.253 66.325

mean 325.734 396.380 66.477
HD max 335.543 414.320 66.717

k = 300
p = 0.25

min 327.608 387.298 66.382
mean 336.479 396.909 66.678
max 343.287 405.209 67.435

86

works may become prohibitive for practical purposes. In contrast, a proper application of

algorithms that provide such geodesic information allows an analyst to more quickly assess

the impact of geodesic lengths to characterize the importance of nodes within the network

using nodal and/or network measures. A knowledge of the relationship between the geodesic

matrix and measure computations allows the implementation of much more efficient code.

Moreover, knowledge of the detailed implementation of an algorithm to compute measures

allows for enhancements to the efficiency with which it is encoded, thereby reducing the time

required to attain key results.

Future Work. As indicated in the analysis of the results of the NetworkX testing,

there appears to be a density threshold at which the F-W algorithm becomes more efficient

(for these tests approximately when density is between 0.3 and 0.4). However, in the open

literature, this threshold has not been explored. “There is no strict distinction between

sparse and dense [networks]” [8]. General guidance indicates that the F-W algorithm is

appropriate for dense graphs and RD-type algorithms are more suited to sparse graphs. A

more rigorously designed experiment and analysis of the NetworkX code for computing the

geodesic matrix using the two methods over appropriately selected random networks with

varying densities would provide a more accurate value of such a threshold.

3.3 Extending All Geodesics Information

In the previous section, the utility of computing lengths of geodesics, or shortest paths,

for all node pairs in a network was demonstrated. Because preprocessing all geodesic lengths

enables nodal and network measures to be computed rapidly, the algorithms that compute

geodesic lengths for all node pairs are extended in this section to include more output

information so additional measures may be rapidly calculated.

87

This section proposes and demonstrates the utility of storing additional information about

network features to enable the rapid calculation of several nodal and network measures

after the information is preprocessed. The algorithms that generated the geodesic matrix to

reduce computation time are leveraged when constructing the Extended All Geodesic Lengths

Algorithm (EAGL) to account for more features. The betweenness centrality measure is used

to demonstrate its usefulness. Analysis of measure computations on randomly generated

networks, both with and without the stored information, are compared and contrasted to

demonstrate the importance of preprocessing and retaining the geodesic and dependency

information for all node pairs.

3.3.1 Extending Geodesic Algorithms.

The algorithms presented in the previous section collect geodesic information to calcu-

late several nodal and network measures. These measures are computed rapidly using the

geodesic matrix containing the lengths of the geodesics between all node pairs. Unfortu-

nately, there are a number of measures for which the computation requires more information

than is contained in the geodesic matrix. One such measure is betweenness.

The betweenness centrality of a node CB(i) measures the extent to which nodes are along

the geodesic between node pairs. These nodes that are between others and along their

geodesic may have more influence over the others and they have the potential to affect the

flow of information along the path. The betweenness centrality of node k is [10, 53, 63]

CB(k) =
∑

i6=k 6=j∈V

nij(k)

nij
,

where nij is the number of (i, j)-geodesics, and nij(k) is the number of (i, j)-geodesics that in-

clude node k. The betweenness centrality can be computed whether the network is connected

88

and/or directed [63]. The betweenness centrality values can also be computed whether the

arc distances have a length of 1 or some other value [10].

The betweenness centrality for each node in a network is readily computed using the

Betweenness Centrality Algorithm given by Brandes [10]. The algorithm runs in O(nm)

time for networks with unweighted arcs and O(nm + n2 log n) time for weighted networks

using a Fibonacci heap. Algorithm 6 details the unweighted version of the procedure to

compute betweenness centralities. The algorithm utilizes a geodesic discovery and counting

routine (BFS) for each node and then accumulates the betweenness centrality using node

dependencies. Node dependencies are computed using a recursive relation (applied in the

accumulation phase of the algorithm) so that nij and nij(k) in the betweenness calculation

are not directly computed. The algorithm presented is as set forth by Brandes [11].

Algorithm 6 is extended to store the geodesic information for use in subsequent nodal

and network measure calculations. The Extended All Geodesics Lengths (EAGL) Algorithm,

which is stated in Algorithm 7, takes the features of the aforementioned algorithms (i.e.,

retaining all geodesic and predecessor information from the geodesic algorithms (e.g., the

F-W and RD Algorithms) as well as computing node dependencies and counting occurrences

of nodes on geodesics from Algorithm 6) to construct a more robust algorithm. Utilizing

the output geodesic lengths and node dependencies, the nodal and network measures related

to these features can be quickly computed. The algorithm can be further extended to

accommodate the accumulation of other features of the network to enable rapid calculation

of additional measures.

To expand the Betweenness Centrality Algorithm of Brandes [10, 11], the arrays are

replaced by matrices to maintain the geodesic lengths between each node pair, the number

of geodesics on which each node appears, and all predecessors nodes for node pairs. The

associated increase in storage space requirements for the algorithm will affect is speed when

89

Algorithm 6 Betweenness Centrality Algorithm (unweighted) [11:p. 5]

Input
A directed network with nodes V = {1, . . . , n} and arcs E = (i, j), i, j ∈ V .

Data
Q: queue for nodes.
S: stack for nodes.
dist(v): distance from source.
Pred(w): list of predecessors on geodesics from source.
σ(v): number of geodesics from source to node v.
δ(v): dependency of source on node v.

Output
The betweenness centrality CB(i) for each node i.

Algorithm
For s ∈ V ,

Single-Source Geodesics Problem
Initialization

For t ∈ V ,
Pred(w)← empty list; dist(t)←∞; σ(t)← 0

dist(s)← 0; σ(s)← 1
Enqueue s→ Q

While Q not empty
Dequeue v ← Q; Push v → S
For each w such that (v, w) ∈ E
Path Discovery
if dist(w) =∞

dist(w)← dist(v) + 1; Enqueue w → Q
Path Counting
if dist(w) = dist(v) + 1
σ(w)← σ(w) + σ(v); Append v → Pred(w)

Accumulation
For v ∈ V , δ(v)← 0
While S not empty

Pop w ← S
For v ∈ Pred(w)

δ(v)← δ(v) + σ(v)
σ(w)

(1 + δ(w))

If w 6= s, CB(w)← CB(w) + δ(w)
Next s.

90

Algorithm 7 Extended All Geodesics Lengths (EAGL) Algorithm

Input
Directed network with nodes V = {1, . . . , n} and arcs E = (i, j), i, j ∈ V .
A: matrix of adjacency between node pairs.
D: matrix of distances between node pairs.

Data
Q: FIFO queue if unweighted, priority queue if weighted.
S: stack for nodes.

Output
G: matrix of geodesics between node pairs.
M : matrix of dependencies between node pairs.
N : matrix of number of geodesics between node pairs.
P : matrix of lists of predecessors on geodesics between node pairs.

Algorithm
Initialization

For s, t ∈ V ,
gst ←∞; mst ← 0; nst ← 0; pst ← empty list; δst ← 0; σst ← 0;

Single-Source Geodesics Problem
For s ∈ V ,
gss ← 0; σss ← 1
If unweighted
BFS

Else
Dijkstra

Accumulation
While S not empty

Pop w ← S
For v ∈ psw
msv ← msv + nsv

nsw
(1 +msw)

Next s.

data points are accessed from very large matrices. The increased storage requirements do

not, however, alter the required number of operations, other than placing data into storage.

The general outline of the EAGL Algorithm (Algorithm 7) follows that of the Betweenness

Centrality Algorithm (Algorithm 6). First geodesics from node i to all other nodes and their

counts are determined using BFS for unweighted networks and Dijkstra’s Algorithm for

weighted networks. Then, the dependency of node i on every other node is accumulated

91

BFS
Enqueue s→ Q
While Q not empty

Dequeue v ← Q; Push v → S
For each w such that (v, w) ∈ E
Path Discovery
if gsw =∞
gsw ← g + 1; Enqueue w → Q

Path Counting
if gsw = gsv + 1
nsw ← nsw + nsv; Append v → psw

Dijkstra
Enqueue s→ Q with priority 0
While Q not empty

Dequeue minimum priority v ← Q with d← priority
Push v → S
For each w such that (v, w) ∈ E
Path Discovery
dist← d+ dvw
if gsw > dist
gsw ← dist; nsw ← nsv; psw ← v
If w ∈ Q

Update w ∈ Q to priority dist
Else

Enqueue w → Q with priority dist
Path Counting
Else if gsw = dist
nsw ← nsw + nsv; Append v → psw

with the order reversed from the order of the discovery of its geodesic from i. The EAGL

Algorithm retains the dependencies in matrix form, allowing the betweenness centrality to

be computed upon termination.

The EAGL Algorithm outputs several matrices that are used to compute the measures.

The geodesic matrix G has entries gij representing the length of the geodesic from node i to

node j. The number of geodesics between node i and node j is represented by entry (i, j)

in the geodesic count matrix N . For each node pair, the list of immediate predecessors is

contained in the matrix P , where pij is the list of immediate predecessors of node j on the

92

(i, j)-geodesic. The dependency matrix M , where the value mij indicates the dependency of

node i on node j, contains the dependency between node pairs required for the betweenness

centrality calculation. Finally, Algorithm 6 is further modified by removing the betweenness

centrality calculation.

The betweenness centrality is computed using the matrix M directly, after the algorithm

has run to completion. The calculation of the betweenness centrality of node i using the M

matrix output of the EAGL Algorithm is given as

CB(j) =
∑
i6=j∈V

mij. (3.1)

In other words, the betweenness centrality measure is computed by storing the dependencies

and then adding them after all iterations rather than adding them during each iteration of

the algorithm.

3.3.2 Analysis of Measure Computations.

To demonstrate the utility of retaining geodesics and dependency information, several

nodal measures are computed without implementing the EAGL Algorithm in advance. The

measures are calculated within the NetworkX package for the Python coding language. The

nodal measures utilized in this test are listed in Table 26. Subsequently, network measures

are computed using the appropriate nodal measure values as inputs. The network measures

and corresponding nodal measure used as their respective input are denoted in Table 27.

Computation times for each calculation are recoded for analysis.

The test networks are then evaluated using the EAGL Algorithm as a preprocessing

step. The time to complete the EAGL Algorithm is recorded, then the nodal measures are

calculated using as input both the geodesic and dependency outputs of the algorithm. The

93

network measures are then computed in the same manner as before, the computation times

are recorded for analysis.

The test employs the same test cases utilized and described in the previous section. Recall

that for each of three network structures, 30 replicates of four test networks are generated

using the parameters indicated for the 100-node instances and 10 replicates are utilized

for the 1,000-node instances. Half of the test networks have density levels, γ, less than

0.15 (low-density), and the remainder have densities larger than 0.30 (higher-density). The

parameters of the random networks used in testing the EAGL Algorithm implementations

are again listed in Tables 18 and 23. The value of the distance-weight assigned to each arc in

the network is selected using a discreet (integer) uniform distribution having a range between

1 and 10, inclusively.

Table 26. Nodal measures and inputs

Nodal Measure Input from EAGL
eccentricity geodesic
total distance geodesic
closeness centrality geodesic
betweenness centrality dependency

Table 27. Network measures and inputs

Network Measure Input Nodal Measure
diameter eccentricity
radius eccentricity
central nodes eccentricity
peripheral nodes eccentricity
medial nodes total distance
Wiener index total distance
average distance total distance

94

3.3.2.1 100-Node Testing Results.

The baseline computation of nodal and network measures without preprocessing using

the EAGL Algorithm is completed using NetworkX. Moreover, the comparison computations

of nodal and network measures using the outputs of the EAGL Algorithm are completed

using NetworkX. Finally, the EAGL Algorithm is implemented in MATLAB for comparison.

The values of the measures when computed are equivalent, so the results discussed focus on

computation times. A summary of the times to compute the measures for weighted networks

is given in Table 28 and the unweighted network test results are listed in Table 29. The

minimum, average, and maximum computation times in seconds are given when computed

using Python version 2.7, NetworkX version 1.9.1, and MATLAB version 2012a on an HP

Compaq 6005 Pro having a 2.70 GHz AMD Athlon II X2 215 processor and 4.0 GB of RAM.

The results are separated by network type (i.e., ER, BA, or WS) and density, with lower-

and higher-density test networks indicated by LD and HD, respectively. The NetworkX

calculations without using the EAGL Algorithm are listed in the “NetworkX” column of

the table. The computation times using the EAGL Algorithm as a preprocessing step via

the NetworkX package and MATLAB are reported in columns “EAGL (NetX)” and “EAGL

(MATLAB)”, respectively.

Comparisons are considered between the NetworkX tests (i.e., columns “NetworkX” and

“EAGL (NetworkX)”) to draw inferences about the suitability of the EAGL Algorithm to

improve computation times. For the weighted, 100-node networks, the implementation of

the EAGL Algorithm to preprocess geodesic and dependency information resulted in com-

putation times roughly half those without preprocessing for lower-density networks tested

and nearly a third of the computation time for the tested higher-density network instances.

Interestingly, for the unweighted, 100-node networks, the baseline NetworkX code was faster

than the NetworkX implementation after computing the EAGL Algorithm in advance for the

networks tested. This is likely because the nodal measures each use the BFS Algorithm in-

95

Table 28. Computation times for weighted, 100-node random networks for EAGL Algorithm
testing

NetworkX
EAGL

(NetworkX)
EAGL

(MATLAB)

ER

β = 0
min 0.492 0.236 0.951

mean 0.520 0.247 0.995
LD max 0.545 0.276 1.081

p = 0.1
β = 1

min 0.493 0.237 0.946
mean 0.518 0.250 0.976
max 0.540 0.293 1.117

β = 0
min 1.883 0.623 2.566

mean 1.919 0.640 2.621
HD max 1.958 0.708 2.691

p = 0.5
β = 1

min 1.886 0.590 2.553
mean 1.935 0.634 2.614
max 2.002 0.750 2.723

BA

ma = 2
min 0.472 0.223 0.891

mean 0.489 0.234 0.906
LD max 0.520 0.253 0.918

n0 = 25
ma = n0

5

min 0.627 0.271 1.125
mean 0.643 0.283 1.163
max 0.662 0.321 1.309

ma = 2
min 1.190 0.437 1.804

mean 1.212 0.456 1.845
HD max 1.239 0.511 1.929

n0 = 55, 50
ma = n0

5

min 1.333 0.449 1.956
mean 1.361 0.470 2.007
max 1.403 0.501 2.130

WS

p = 0.1
min 0.285 0.171 0.663

mean 0.293 0.178 0.676
LD max 0.303 0.202 0.699
k = 4

p = 0.25
min 0.293 0.171 0.661

mean 0.300 0.181 0.676
max 0.310 0.204 0.710

p = 0.1
min 1.229 0.422 1.794

mean 1.259 0.438 1.821
HD max 1.320 0.457 1.850

k = 30
p = 0.25

min 1.232 0.436 1.794
mean 1.253 0.454 1.828
max 1.283 0.489 1.868

96

Table 29. Computation times for unweighted, 100-node random networks for EAGL Algorithm
testing

NetworkX
EAGL

(NetworkX)
EAGL

(MATLAB)

ER

β = 0
min 0.121 0.180 0.940

mean 0.125 0.192 0.976
LD max 0.129 0.223 1.010

p = 0.1
β = 1

min 0.121 0.182 0.907
mean 0.125 0.207 0.957
max 0.130 0.250 1.041

β = 0
min 0.304 0.621 3.129

mean 0.316 0.653 3.179
HD max 0.346 0.713 3.244

p = 0.5
β = 1

min 0.298 0.663 3.097
mean 0.311 0.757 3.171
max 0.329 0.857 3.447

BA

ma = 2
min 0.106 0.163 0.826

mean 0.109 0.176 0.841
LD max 0.120 0.235 0.868

n0 = 25
ma = n0

5

min 0.130 0.217 1.094
mean 0.135 0.227 1.116
max 0.160 0.254 1.141

ma = 2
min 0.159 0.345 1.496

mean 0.167 0.365 1.524
HD max 0.191 0.541 1.552

n0 = 55, 50
ma = n0

5

min 0.189 0.417 1.912
mean 0.197 0.454 2.024
max 0.216 0.549 2.309

WS

p = 0.1
min 0.097 0.123 0.664

mean 0.099 0.128 0.727
LD max 0.103 0.148 0.857
k = 4

p = 0.25
min 0.098 0.123 0.647

mean 0.102 0.129 0.674
max 0.110 0.146 0.830

p = 0.1
min 0.197 0.395 1.775

mean 0.206 0.448 1.961
HD max 0.218 0.521 2.479

k = 30
p = 0.25

min 0.198 0.403 1.857
mean 0.204 0.414 1.950
max 0.215 0.435 2.318

97

ternally in the NetworkX code, whereas the EAGL Algorithm also utilizes BFS but requires

additional steps for accumulation, storing, and retrieving the geodesic information. This

may make the EAGL Algorithm for unweighted networks less efficient than when considered

with arc weights. However, deliberate planning decision makers and analysts may benefit

from the ability to preprocess the EAGL Algorithm to attain the relevant information and

compute measure values in fractions of a second.

When considering either the weighted or unweighted 100-node tests, the total time to

compute the measures was respectively less than 0.006 seconds and 0.016 seconds when

preprocessing the EAGL Algorithm in Python and MATLAB. The relationship between

the Python (NetworkX) and MATLAB implementation of the EAGL Algorithm is more

consistent for weighted and unweighted network instances. The MATLAB implementation is

consistently slower than the Python implementation by seconds for higher-density networks.

The difference is not as large for lower-density networks, but the Python implementation is

still faster for the tested networks. Thus, network density impacts the speed with which the

EAGL Algorithm computes the geodesic and dependency information in both Python and

MATLAB.

3.3.2.2 1,000-Node Testing Results.

The baseline computation times of nodal and network measures without implementing

the EAGL Algorithm in advance and the computation times utilizing the EAGL Algorithm

outputs are further tested using 1,000-node networks. Because the networks are larger and

the computation time will increase, 10 replicates of the 1,000-node networks are studied.

For the weighted, 1,000-node test instances, the minimum, average, and maximum com-

putation times are listed in Table 30. The total computation time for the nodal and network

measures without executing the EAGL Algorithm was as given for the total computation

time in the “NetworkX” column within Table 30. In the test, the combined computation time

98

Table 30. Computation times for weighted, 1,000-node random networks for EAGL Algorithm
testing

NetworkX
EAGL

(NetworkX)
EAGL

(MATLAB)

ER

β = 0
min 545.097 188.552 532.573

mean 568.067 196.426 535.023
LD max 580.719 201.342 540.122

p = 0.1
β = 1

min 540.498 197.904 532.208
mean 564.697 207.875 535.177
max 579.561 214.640 543.396

β = 0
min 2428.917 669.203 2113.944

mean 2482.451 695.608 2128.024
HD max 2534.796 710.374 2154.880

p = 0.5
β = 1

min 2461.556 673.915 2374.696
mean 2548.988 699.740 2579.201
max 2637.119 717.622 2764.166

BA

ma = 2
min 282.389 99.648 355.571

mean 286.292 107.206 358.648
LD max 291.501 118.446 366.387

n0 = 250
ma = n0

5

min 642.869 202.848 676.921
mean 665.001 212.967 679.576
max 682.312 221.237 685.432

ma = 2
min 1330.465 358.121 1279.623

mean 1373.583 362.864 1371.711
HD max 1434.382 369.856 1514.449

n0 = 550, 500
ma = n0

5

min 1611.936 454.405 1522.401
mean 1700.565 459.331 1529.309
max 1939.163 463.953 1535.249

WS

p = 0.1
min 234.326 93.644 273.551

mean 245.775 97.895 275.004
LD max 258.201 102.991 278.711

k = 40
p = 0.25

min 234.750 96.751 277.141
mean 246.849 102.489 278.946
max 255.372 106.420 281.971

p = 0.1
min 1344.966 385.196 1324.347

mean 1402.696 398.637 1433.827
HD max 1484.916 409.461 1673.532

k = 300
p = 0.25

min 1452.170 409.919 1343.801
mean 1485.022 440.260 1354.931
max 1534.871 514.950 1394.945

99

Table 31. Computation times for unweighted, 1,000-node random networks for EAGL Algo-
rithm testing

NetworkX
EAGL

(NetworkX)
EAGL

(MATLAB)

ER

β = 0
min 100.417 134.961 481.684

mean 108.156 138.479 484.009
LD max 112.844 140.351 487.264

p = 0.1
β = 1

min 103.052 138.875 485.629
mean 110.128 144.300 503.609
max 112.966 161.031 647.436

β = 0
min 523.189 694.632 2990.897

mean 538.894 713.896 3226.610
HD max 556.960 724.064 3365.102

p = 0.5
β = 1

min 509.540 699.929 3060.777
mean 531.826 723.613 3334.784
max 541.691 733.572 3907.739

BA

ma = 2
min 39.865 73.637 292.595

mean 40.646 75.563 295.424
LD max 41.778 84.336 297.018

n0 = 250
ma = n0

5

min 109.919 168.967 679.224
mean 115.210 173.337 680.555
max 121.263 175.461 682.993

ma = 2
min 194.215 299.484 1028.013

mean 200.883 301.815 1033.423
HD max 216.664 305.062 1042.393

n0 = 550, 500
ma = n0

5

min 269.420 400.387 1588.339
mean 296.869 415.907 1602.329
max 308.339 420.444 1609.812

WS

p = 0.1
min 39.368 72.182 261.701

mean 41.943 73.133 264.127
LD max 42.929 79.101 266.524

k = 40
p = 0.25

min 46.982 75.351 294.133
mean 48.999 80.485 295.321
max 52.635 95.813 296.284

p = 0.1
min 235.383 373.441 1389.815

mean 241.482 379.434 1406.931
HD max 248.160 395.621 1502.151

k = 300
p = 0.25

min 257.817 389.898 1543.328
mean 266.981 401.377 1558.333
max 277.254 419.524 1652.021

100

for all nodal and network measures after executing the EAGL Algorithm was 0.72 seconds

in NetworkX and 0.12 seconds in MATLAB.

Although the total calculation times for using NetworkX without first implementing the

EAGL Algorithm are faster for the unweighted network instances tested, the benefit of

preprocessing the geodesic and dependency matrices for rapid nodal and network measure

computation in fractions of a second remains invaluable for applications which require it.

Consider deliberate planning. By preprocessing the geodesic matrix, alternate interdiction

strategies may be considered by utilizing the rapid measure calculations, rather than com-

puting the geodesics to compute measures for every alternative.

3.3.3 Expanding All Geodesics Information Summary.

This section demonstrates that the preprocessing of network information can be extended

to include features from the network to compute desired measures in fractions of a second.

By processing the EAGL Algorithm in advance, the nodal and network measures for which

the necessary information is stored are computed very quickly. The ability to compute the

measures rapidly warrants the additional completion time for unweighted networks. The

speed with which the measures are computed based on stored geodesic and dependency

information allows the modification of their matrix representations to quickly ascertain the

impact of node removal from the network to the measures of interest.

3.4 Geodesics After Node Destruction

The previous section demonstrated that nodal and network measure can be computed

rapidly when the EAGL Algorithm is implemented prior to their computation. This section

utilizes the output of the EAGL Algorithm to update the geodesic lengths as the result of

removing each node in the network.

101

3.4.1 GAND Approach.

After computing and storing the geodesic information for all node pairs using the EAGL

Algorithm, an approach that accounts for the Geodesics After Node Destruction (GAND)

is developed. The GAND Approach is stated in Algorithm 8 and approximates the impact

on the geodesic lengths between all node pairs in the network as a result of each node’s

destruction. Rather than recompute the geodesic length between all node pairs, the approach

examines only the nodes for which their individual destruction will change the length of the

geodesic. The only nodes that, if destroyed, result in a larger geodesic length are those nodes

that have a single geodesic for a given node pair. Thus, the approach computes the change

in the geodesic length as a result of destroying each node that is on the geodesic.

A key feature is that the only input required is the set of geodesic lengths from the

EAGL Algorithm. No additional information is required by the approach to update geodesic

lengths. This assumption allows for fewer calculations but does not necessarily attain optimal

geodesic length solution in certain instances that arise as a result of removing each node.

However, the GAND Approach identifies very good solutions rapidly, and a relatively simple

check may be utilized to ensure the GAND solution is appropriate prior to its use.

The outputs of the EAGL Algorithm, the length and number of geodesics as well as the

predecessors for each node pair in the network, are sufficient to determine if an alternate

geodesic is available that does not contain a specified node in most cases. The number of

geodesics from node i to node j that pass through node k is given by [10]

nij(k) =

0 if gij < gik + gkj,

nik ∗ nkj otherwise,

(3.2)

where gij and nij are entries of the geodesic matrix and geodesic counts that are outputs

of the EAGL Algorithm, respectively. Given the quantity nij(k), it is possible to determine

102

whether node k, which is to be removed from the network, lies on the geodesic from node i

to node j. If the total number of geodesics between node pairs is not equal to the number of

geodesics containing the specified node, i.e., nij 6= nij(k), there exists an alternate geodesic

for the given node pair that does not contain node k. Note that the total number of geodesics

for a given node pair will never be less than the number of geodesics between the same node

pair that contain the specified node. Thus, it can quickly be determined whether there is

an alternate geodesic for a given node’s removal by utilizing the relationship described by

Equation (3.2) to identify an alternate geodesic that does not contain node k.

The GAND Approach requires a n× n× n structure to store the change in the length of

the geodesic between all node pairs for a given node’s destruction. The output is denoted as

G∆, where the entry g∆
ijk denotes the change in the length of the (i, j)-geodesic as a result of

destroying node k. As input, the GAND Approach uses the output of the EAGL Algorithm.

The GAND Approach iterates through every node pair. For each node pair, each node that

appears on the geodesic between them is considered for removal from the network. The

approach then determines an alternate geodesic for the node pair. If no alternative exists,

the change in the shortest path length is labeled ∞, meaning that the removal of the node

severs any possible geodesic between the nodes. The value of ∞ is selected to indicate that

there exists no alternate geodesic that will allow a finite path length between the nodes of

interest. If an alternate geodesic is identified, the change in geodesic length is updated.

The increase in the length of the (i, j)-geodesic can be computed by subtracting the pre-

destruction (i, j)-geodesic length from the alternate (i, k)- and (k, j)-geodesic path lengths.

This difference is always positive since the path length will only increase after a node on the

geodesic is destroyed.

Consider the network depicted in Figure 10, where the length of each arc is one unit. For

illustrative purposes, consider only the node pair (i, j) = (1, 7). The length of the geodesic

from node 1 to node 7 is 4 units, which can be calculated using the EAGL Algorithm. Using

103

Algorithm 8 Geodesics After Node Destruction (GAND) Approach

Input
Directed network with nodes V = {1, . . . , n} and arcs E = (i, j), i, j ∈ V .
EAGL Algorithm Outputs (i.e., G, M , N , and P).

Data
K: Queue of nodes contained on current geodesic.

Output
G∆: n × n × n matrix of the change in geodesics between node pairs as a result of
removing each node, individually.

Approach
Initialization

For k ∈ V , g∆
ijk =

−∞, if i = k and j = k,

∞, if i = k or j = k,

0, otherwise.
Update Geodesics

For i ∈ V ,
For j ∈ V and j 6= i

Assign node j to K
While K not empty

Pop v ← K
Assign predecessor nodes of v to K, if not already assigned
If v 6= i and v 6= j

Set gbest =∞
Identify Alternate Geodesic

For k ∈ V , k 6= i, j, v
Compute nik(v)

If gik < giv + gvk,
nik(v)← 0

Else,
nik(v)← niv ∗ nvk

Compute nkj(v)
If gkj < gkv + gvj,
nkj(v)← 0

Else,
nkj(v)← nkv ∗ nvj

Update geodesic length
If nik(v) < nij and nkj(v) < nij

Update gbest = min(gbest, gik + gkj).
Next k.
g∆
ijv = gbest − gij.

Next j
Next i.

104

the GAND Approach, each node that appears on a (1, 7)-geodesic is considered for removal

and will comprise the set K. Initially, the set K contains node 7 and, since it is the endpoint

of the geodesic in question, is not considered for removal. The predecessor, node 6, is added

to set K. Node 6 is then considered for removal. Its predecessor, node 5, is added to K and

an alternate geodesic is considered. Because node 6 appears on every possible path from

node 1 to node 7, there is no alternate geodesic and g∆
1,7,6 = ∞. Node 5 is considered for

removal next. There is an alternate (1, 7)-geodesic (via nodes 3 and 4) that does not contain

node 5 and the new geodesic length 1 unit longer than the (1, 7) geodesic through node 5,

so the change of geodesic length is updated, i.e., g∆
1,7,5 = 1. The process is repeated for node

2, with g∆
1,7,2 =∞.

The GAND Approach has the drawback that, when certain network topologies are

present, the geodesic information is not sufficient to provide the new geodesic length be-

tween a specified node pair for a given node’s removal from the network. Two such topology

instances, where one is weighted and the other is unweighted, are examined to explain the

current shortcoming of the GAND Approach.

Consider the weighted, undirected network depicted in Figure 11 with arc (5,6) having

a weight (i.e., length) of 5 units and all other arcs having a weight of 1 unit. When the

geodesic matrix is computed for the weighted instance of the network, the (4, 6)-geodesic

has length 3. When node 3 is removed from the network and only geodesic information is

Figure 10. Example Network for GAND Approach

105

accessible, i.e., the adjacency data is not used so as to improve the speed of the calculation,

no alternate (4, 6)-geodesic geodesic can be constructed that does not pass through node

3, which is removed, and the GAND Approach gives an infinite geodesic length. Thus, the

weighted network requires additional information when unique topologies arise that require

solving the geodesic problem (e.g., utilizing Dijkstra’s Algorithm), which is what the GAND

Approach is circumventing.

However, the GAND Approach is not immune to all unweighted topologies either. Con-

sider the unweighted instance of the network in Figure 12. When considering as input only

the geodesic matrix output from the EAGL Algorithm when node 2 is to be removed, for node

pair (1, 3), the unique topology of this network instance results in a suboptimal geodesic. The

geodesic between node pairs (1, 3), (1, 5),(1, 6), (5, 3), and (6, 3) each have length 2 contain

node 2 as the intermediate node along the geodesic. As a result of removing node 2, it is clear

that the updated geodesic length is 5 via nodes 4, 5, 6, and 7. However, the geodesic matrix

from the EAGL Algorithm does not contain sufficient information to construct this path.

Each combination of nodes for an alternate geodesic between nodes 1 and 3 includes node 2.

For instance, if node 5 is considered as an alternate intermediate node, the geodesic matrix

has two geodesics for the (1, 5) length of 2 units and the single (5, 3)-geodesic through node

2 with length 2, which is disallowed as it contains node 2. Similarly, there is no alternate

geodesic via node 6. Thus, the GAND Approach identifies an alternate geodesic considering

the removal of node 2 via intermediate nodes 8, 9, 10, 11, and 12 with a length of 6, which

Figure 11. Weighted Network Instance

106

is longer than the length 5 geodesic mentioned previously and not discovered using GAND

Approach assumptions.

Because the GAND Approach may not always identify an alternate geodesic, a relatively

simple procedure can determine whether an infinite geodesic change is valid; the algebraic

connectivity of a network can indicate whether a network is connected. The algebraic con-

nectivity is equivalent to the second smallest eigenvalue of the Laplacian matrix, which is

L(N) = Q(N)−A(N), where Q(N) denotes the diagonal matrix whose entries are the degree

of the nodes and A(N) denotes the adjacency matrix of the network N . Fielder proved that

a network is not connected if and only if the algebraic connectivity equals zero [27]. Recall

that, if a geodesic length is given as infinite, there is no path between the node pairs and

the network is not connected. Thus, the algebraic connectivity provides a verification of

the GAND Approach result. If the algebraic connectivity of the network instance in which

a node is removed invalidates the GAND result, the geodesic can be computed using the

EAGL Algorithm after the node removed.

For the weighted, undirected network depicted in Figure 11, recall that the GAND Ap-

proach solution for node pair (3, 6) when node 4 is removed is infinite. The algebraic con-

nectivity of the network with node 4 removed is 0.519. Because the value of the algebraic

Figure 12. Unweighted Network Instance

107

connectivity is non-zero, the perturbed network is connected and the infinite geodesic length

is invalid.

Unfortunately, the algebraic connectivity validation step for infinite geodesic solutions

from the GAND Approach will not identify approach solutions that are finite as was the

case in the example network depicted in Figure 12. The GAND Approach solution for

node pair (1, 3) when node 2 is removed from the network incorrectly identifies an alternate

geodesic having length 6. Because there exists a path between the all node pairs after node

2 is removed, the network is connected and the algebraic connectivity is non-zero. Thus, the

validation procedure is only appropriate for infinite GAND solutions.

Of note, the GAND Approach cannot be inserted into the EAGL Algorithm because the

change in geodesic length requires geodesic information between all node pairs. The EAGL

Algorithm does not have all shortest path information until after its final iteration. It may

be possible to collect the values of the change in geodesic lengths recursively and track the

destruction impact of nodes as an additional possible extension of the approach.

3.4.2 GAND Extensions.

The GAND Approach may be extended to consider specialized scenarios. Perhaps the

source-terminus pairing is fixed. Rather than considering the impact of a node’s removal

to every possible combination, the approach need only consider the predetermined source-

terminus pair. Alternatively, the decision maker may be interested in the impact of de-

stroying a specific node to all possible source-terminus combinations. This also significantly

reduces the number of combination required to determine the impact of removal. This sec-

tion describes such extensions and the implementation modifications of the GAND Approach

required.

The GAND Approach can be specialized to consider only a specified source-terminus

combination. If an analyst is concerned only with the geodesic between nodes s and t, the

108

GAND Approach can be modified to output only the impact to the (s, t)-geodesic length.

This modification (GAND-st) requires two changes. First, the output is replaced by a n× 1

column vector Gst∆, where entry gst∆(k) provides the increase in (s, t)-geodesic length as a

result of removing node k from the network. The output is a column vector because the

change in geodesic length is always computed with regard to the source-terminus pair, so

the output is the impact of each node’s removal.

Alternatively, the GAND Approach can be specialized to consider only a single node’s

removal. Perhaps an analyst is concerned only with the removal or destruction of a specified

node’s removal from the network. The GAND Approach is modified to determine the increase

in the length of the geodesics between all node pairs as a result of the removal of node w

from the network. The modification (GAND-w) results in two changes to the approach. The

first is replacing the output with a matrix whose size is n× n. The output matrix Gw∆ has

entries gw∆
ij , representing the change in geodesic length between nodes i and j as a result

of removing node w from the network. The final modification is to examine node v in the

GAND Approach only if it is the specified node, i.e., v = w. Once node w is encountered on

the geodesic, K may be emptied, since node w will not be encountered again.

The GAND Approach modifications can be further combined into a single procedure

that considers the increase in geodesic length of a specific (s, t) node pair as a result of

removing or destroying a single specified node w. The GAND Approach can be modified as

described for each of the previous modifications, resulting in a new approach, GAND-st-w.

The resulting output gstw∆ will be a single value indicating the increase in the length of

the (s, t)-geodesic when node w is removed. If the value is infinite, the removal of node w

severs the geodesic between node s and node t which must be verified via the aforementioned

algebraic connectivity procedure. If the value is 0, there is no change in the geodesic length

when node w is removed, i.e., node w is not contained in the specified geodesic.

109

Preliminary testing was conducted to gauge the impact of the extensions of the GAND

Approach. The results suggest that specializing the GAND Approach to a specified source-

terminus pair allow the procedure (i.e., GAND-st and GAND-st-w) to complete in less than

one second for the 100-node networks tested. When 100-node networks were tested for a

single node’s removal, the time to complete the GAND-w approach reduced by a factor of

five for the preliminary networks tested.

An alternative to the GAND Approach involves using as input a modified EAGL Algo-

rithm that provides as output the k shortest geodesics. Then, the GAND Approach could

remove nodes along the shortest geodesic and use each of the remaining k − 1 shortest

geodesics to locate an alternate geodesic that does not include the removed node. This al-

ternative is left for future research and may still have the drawback of network topologies

that require more information than is accessible via EAGL Algorithm output data.

3.4.3 New Measures Related to GAND Outputs.

The nodal and network measures related to geodesics can be quickly computed based on

the GAND Approach output. Care must be taken to ensure the removal of node k is properly

accounted. The nodal measures of eccentricity, total distance, and closeness centrality can be

computed with slight modifications using the output of the GAND Approach. The geodesic

lengths between all node pairs after node k is removed from the network can be computed

with the outputs G, the geodesic matrix from the EAGL Algorithm, and G∆, the output

of the GAND Approach. Since the GAND Approach is concerned with the removal of each

node in the network, there are n instances of each nodal measure: one corresponding to each

node’s removal. Furthermore, each nodal measure has a value for each node in the network.

An n× n matrix of the measure of interest will capture the nodal measure as a result of the

removal of each node. Let e(i, k), td(i, k), and CC(i, k) respectively represent the eccentricity,

total distance, and closeness centrality of node i in the network from which node k has been

110

Measure Equation

eccentricity

e(i, k) = max(max
j∈V
j 6=k

gijk + g∆
ijk,max

j∈V
j 6=k

gijk + g∆
jik) (directed)

e(i, k) = max
j∈V
j 6=k

gijk + g∆
ijk = max

j∈V
j 6=k

gijk + g∆
jik (undirected)

total distance
(transmission)

td(i, k) =
∑
j∈V
j 6=k

gijk + g∆
ijk

closeness
centrality

CC(i, k) =
1∑

j∈V
j 6=k

gijk + g∆
ijk

=
1

td(i, k)

Table 32. Nodal measure updates for GAND Approach output

removed. The modified equations for the calculation of each of these nodal measures is given

in Table 32. For each measure, its value when i = k is left empty by construction so it does

not skew the network measures that use the value in their calculation.

Similarly, the network measures related to geodesics must account for the removal of each

node. Each network measure has a value for each network from which node k is removed.

Thus, the network measures will be n × 1 column vectors where each entry represents the

measure’s value after the removal of node k. Let diam(k), rad(k), P (k), C(k), M(k), w(k),

and w(k) denote the respective network measures diameter, radius, peripheral nodes, central

nodes, medial nodes, Wiener index, and average distance after node k is removed. The

modified equation for each network measure based on the respective nodal measures is given

in Table 33. The calculations for network measures do not skip the values for the nodal

measures for node k since they were left empty and will not contribute to the calculation of

the network measure.

A new measure that indicates the collective impact of removing each node to all shortest

paths in the network is the removal index. The removal index ri(k) can be determined using

the output of the GAND Approach because it contains information related to the removal

111

Measure Equation

diameter diam(k) = max
i∈V

e(i, k)

radius rad(k) = min
i∈V

e(i, k)

peripheral nodes P (k) = {i|e(i, k) = diam(k)}

central nodes C(k) = {i|e(i, k) = rad(k)}

medial nodes M(k) = {i|td(i, k) = min
j∈V

td(j, k)}

Wiener index
(transmission)

w(k) =
∑
i,j∈V

gij =
∑
i∈V

td(i, k)

average distance w(k) =
w(k)

(n− 1)(n− 2)

Table 33. Network measure updates for GAND Approach output

of node k. Essentially, the index computes the total change in geodesic length as a result of

removing a node and is given by

ri(k) =
∑
i6=k

∑
j 6=k

g∆
ijk, (3.3)

The removal index ri(k) indicates the total impact to all node pairs of removing node k from

the network. The larger the value of the index, the larger the impact of a node’s removal.

The removal index for each node in the network depicted in Figure 10 is computed using

the output matrix G∆ from the GAND Approach. The removal index is ri(k) = 0 for nodes

1 and 7, ri(k) = ∞ for nodes 2 and 6, ri(k) = 4 for nodes 3 and 4, and ri(k) = 8 for node

5. In other words, the total impact of removing either node 2 or 6 will separate the network

into at least two components for at least one node pair in the network, whereas the total

impact of removing the other nodes is as given by the removal index.

112

The removal index for any specified source-terminus pair rist(k) can be computed utilizing

the output os either the GAND Approach or the GAND-st approach as

rist(k) =

0, if k = s or k = t,

g∆
stk = gst∆k , otherwise,

(3.4)

when using the respective output information.

The GAND Approach output will also provide insight regarding the most vital node to

geodesics. The most vital node in a shortest path problem is the node for which the removal

results in the largest increase in the minimal source-terminus path length. The most vital

arc or node problem was solved or refined in [16, 17, 47, 52, 67].

The most vital node to geodesics is typically determined based on a specified source-

terminus pair. The GAND Approach provides sufficient information to identify the most

vital node to geodesics for every node pair in the network provided the GAND solution is

optimal, otherwise, the identified vital nodes are a starting point for determining the actual

vital nodes. The most vital nodes to geodesics for the network, vit(N), for all node pairs

are those nodes that have the maximum removal index, while the least vital nodes, lv(N),

for all node pairs in the network are those with the minimum removal index,

vit(N) = {i|ri(i) = max
j∈V

ri(j)}, (3.5)

lv(N) = {i|ri(i) = min
j∈V

ri(j)}. (3.6)

The most vital nodes in the network are those that should be selected when identifying nodes

for which the removal will have the greatest impact regardless of the node pair considered. In

other words, the most vital nodes are those nodes that should be targeted when determining

attack strategies or hardened when creating defense strategies. The least vital nodes in the

113

network are those nodes that will have the smallest impact (typically zero) when removed

from the network across all node pairs. For a specified source-terminus node pair, the most

vital node can be determined as well. For attack strategies requiring high precision with few

collateral or cascading effects (i.e., surgical strikes), targets may be identified by the least

vital (non-zero) node. To identify such nodes, the definition of the least vital node ((3.6))

would be altered to consider nodes with non-zero removal indices, i.e., min
j∈V

ri(j) : ri(j) > 0.

The most vital nodes for a given node pair can be computed in a manner similar to

Equation (3.5) using rist(k) instead. Alternatively, the GAND-st approach is suited to this

because the construction of the GAND-st approach is such that it outputs the removal index.

Thus, the most vital node to the (s, t) geodesic is the node associated with the maximal gst∆,

vitst(N) = {i|ri(i) = max
j∈V

rist(j) = max
j∈V

gst∆j }. (3.7)

Both the most vital node problem and the output of the GAND Approach identify a

single target node or a set of nodes having equivalent utility. If the budget or rules of

engagement dictate that a single target be attacked, these node identification methods are

suitable for determining an attack strategy. However, when the number of nodes in the

set of most vital nodes is insufficient to identify a target set of more than one node, these

methods fall short. The second most vital node to the geodesic or the node with the second

largest removal index combined with the removal of the first node may not have the same

effect as the two nodes when chosen as a set. Addressing the shortcoming of this myopic

approach will be an avenue of future research. One possible extension occurs when there are

predetermined strike packages. The rudimentary approach of removing the nodes in each

target set and evaluating the residual network of each is likely the most efficient approach.

Identification of target sets using specially tailored implementations of the GAND Approach

may be possible.

114

3.4.4 GAND Testing.

The GAND Approach and its modifications should be compared to an appropriate base-

line. The baseline testing verifies that the impact of each node’s removal is updated correctly.

Additionally, it demonstrates the computational effectiveness of the GAND Approach over

the more rudimentary implementation of iteratively removing each individual node and ap-

plying the EAGL Algorithm.

This testing is conducted utilizing the same randomly-generated undirected and un-

weighted network structures that were employed in the previous sections: Erdős-Rényi net-

works, Barabási-Albert networks, and Watts-Strogatz networks. The parameter setting for

the random networks used in testing the GAND Approach and its modifications are listed

in Table 18. For each of three types of network structures, 30 replicates of 100-node net-

work instances are generated using the parameters indicated. Half of the test networks have

density levels γ less than 0.15 (low-density) and the remainder have densities larger than

0.30 (higher-density). When a weighted network instance is utilized, the distance-weights

are selected from a discrete (integer) uniform distribution having a range between 1 and 10,

inclusively.

3.4.4.1 100-Node Testing Results.

The actual impact to geodesic lengths is determined by implementing the EAGL Al-

gorithm having as input a modified adjacency matrix with a single node removed. The

geodesic lengths between all node pairs are retained for comparison. The EAGL Algorithm

is repeated for each of the 100 nodes in the network instance being tested. The minimum,

average, and maxim total completion times for the repeated EAGL Algorithm, denoted as

“rEAGL”, are reported for each of the test instances. In addition, the GAND Approach is

implemented after the EAGL Algorithm is performed on the unperturbed network utiliz-

ing an unmodified instance of the adjacency matrix. The minimum, average, and maximum

115

computation times to complete the GAND Approach are recorded, and the EAGL Algorithm

and GAND Approach completion times are reported separately. The rEAGL procedure and

GAND Approach tests are performed in both MATLAB and Python. The results are fur-

ther analyzed to assess the accuracy of the reported geodesic lengths using the fast GAND

Approach as opposed to the rEAGL procedure. The computation times are given in seconds

when computed using Python version 2.7, NetworkX version 1.9.1, and MATLAB version

2012a on an HP Compaq 6005 Pro having a 2.70 GHz AMD Athlon II X2 215 processor and

4.0 GB of RAM. The results of the of the rEAGL procedure and the GAND Approach tests

for weighted and unweighted network instances utilizing MATLAB are listed in Tables 34

and 35, respectively. The results for the same network instances when implemented using

Python are reported in respective Tables 36 and 37.

The preprocessing step involved in providing input data for the GAND Approach is com-

pleted using the EAGL Algorithm. As expected, the single iteration of the EAGL Algorithm

required to provide input to the GAND Approach takes approximately one hundredth the

time to complete one EAGL iteration for each of the 100 nodes in the network. The Net-

workX implementation of the GAND Approach results in determining the impact of each

node’s removal in less time on average for all network structures except the lower-density

instances of the WS structure for the networks tested. Across all the higher-density test

instances, the GAND Approach is much faster than the rEASP test for the instances tested.

The nodal and network measure computation times are of paramount importance since

the EAGL Algorithm and GAND Approach are preprocessed. The nodal and network mea-

sures for weighted network instances when implemented in MATLAB had a total average

computation time of 0.18 seconds and 0.12 seconds, respectively. The Python implementa-

tion had nodal and network measure calculation times of 2.04 seconds, on average. (There

was no discernable difference between the weighted and unweighted network instances.) For

the unweighted measure computation times when utilizing MATLAB, there appears to be a

116

Table 34. Computation times for weighted, 100-node random networks for GAND Approach
testing in MATLAB

rEAGL
GAND

EAGL GAND

ER

β = 0
min 89.385 0.912 17.251

mean 92.464 0.944 18.598
LD max 95.195 0.944 18.598

p = 0.1
β = 1

min 88.880 0.911 21.609
mean 94.456 0.964 25.022
max 102.453 0.964 25.022

β = 0
min 245.458 2.527 22.004

mean 254.064 2.602 23.435
HD max 281.817 2.602 23.435

p = 0.5
β = 1

min 245.705 2.511 22.517
mean 254.485 2.632 23.958
max 269.248 2.632 23.958

BA

ma = 2
min 85.287 0.863 17.666

mean 86.868 0.879 19.390
LD max 87.934 0.879 19.390

n0 = 25
ma = n0

5

min 106.613 1.086 18.397
mean 109.017 1.110 20.257
max 114.074 1.110 20.257

ma = 2
min 173.878 1.775 21.910

mean 176.606 1.810 24.366
HD max 187.781 1.810 24.366

n0 = 55, 50
ma = n0

5

min 0.130 0.130 0.130
mean 190.893 1.948 23.554
max 192.008 8.548 11.847

WS

p = 0.1
min 63.637 0.648 23.631

mean 64.291 0.657 28.057
LD max 64.864 0.657 28.057
k = 4

p = 0.25
min 63.828 0.648 20.910

mean 64.383 0.658 22.776
max 64.780 0.658 22.776

p = 0.1
min 173.231 1.773 22.760

mean 174.093 1.788 23.944
HD max 175.598 1.788 23.944

k = 30
p = 0.25

min 173.122 1.772 20.684
mean 174.155 1.791 22.130
max 175.260 1.791 22.130

117

Table 35. Computation times for unweighted, 100-node random networks for GAND Approach
testing in MATLAB

rEAGL
GAND

EAGL GAND

ER

β = 0
min 88.765 0.909 28.498

mean 91.395 0.936 29.967
LD max 93.340 0.936 29.967

p = 0.1
β = 1

min 86.376 0.885 36.083
mean 89.217 0.913 40.420
max 91.756 0.913 40.420

β = 0
min 297.36 3.062 72.122

mean 302.091 3.107 73.558
HD max 305.769 3.107 73.558

p = 0.5
β = 1

min 295.265 3.033 70.614
mean 300.406 3.098 72.659
max 305.319 3.098 72.659

BA

ma = 2
min 78.227 0.802 16.602

mean 81.240 0.835 18.739
LD max 91.353 0.835 18.739

n0 = 25
ma = n0

5

min 104.701 1.071 33.024
mean 105.089 1.078 34.852
max 106.190 1.078 34.852

ma = 2
min 143.734 1.472 11.491

mean 146.571 1.505 12.494
HD max 158.010 1.505 12.494

n0 = 55, 50
ma = n0

5

min 0.122 0.122 0.122
mean 190.660 1.953 37.345
max 211.797 13.142 18.737

WS

p = 0.1
min 61.173 0.625 32.472

mean 61.609 0.630 39.908
LD max 62.490 0.630 39.908
k = 4

p = 0.25
min 61.291 0.625 28.953

mean 61.701 0.631 30.617
max 62.107 0.631 30.617

p = 0.1
min 167.555 1.715 30.616

mean 171.210 1.760 39.136
HD max 174.284 1.760 39.136

k = 30
p = 0.25

min 174.393 1.787 30.980
mean 175.623 1.811 32.223
max 176.748 1.811 32.223

118

Table 36. Computation times for weighted, 100-node random networks for GAND Approach
testing in Python

rEAGL
GAND

EAGL GAND

ER

β = 0
min 24.827 0.229 5.519

mean 25.735 0.266 6.095
LD max 27.111 0.266 6.095

p = 0.1
β = 1

min 24.956 0.224 6.869
mean 25.644 0.257 7.991
max 26.274 0.257 7.991

β = 0
min 66.427 0.614 7.258

mean 67.109 0.658 7.668
HD max 67.804 0.658 7.668

p = 0.5
β = 1

min 66.045 0.608 7.113
mean 66.972 0.673 7.695
max 68.524 0.673 7.695

BA

ma = 2
min 23.969 0.216 5.403

mean 24.280 0.237 6.126
LD max 24.748 0.237 6.126

n0 = 25
ma = n0

5

min 29.690 0.269 5.771
mean 30.063 0.298 6.438
max 30.526 0.298 6.438

ma = 2
min 47.135 0.433 7.287

mean 48.009 0.485 7.896
HD max 53.498 0.485 7.896

n0 = 55, 50
ma = n0

5

min 51.169 0.470 7.083
mean 51.557 0.510 7.815
max 51.985 0.726 8.607

WS

p = 0.1
min 18.020 0.159 7.141

mean 18.250 0.192 8.849
LD max 18.638 0.192 8.849
k = 4

p = 0.25
min 18.122 0.161 6.613

mean 18.378 0.187 7.270
max 18.739 0.187 7.270

p = 0.1
min 46.574 0.431 7.337

mean 47.000 0.460 7.852
HD max 48.004 0.460 7.852

k = 30
p = 0.25

min 46.333 0.427 6.702
mean 47.237 0.470 7.277
max 47.669 0.470 7.277

119

Table 37. Computation times for unweighted, 100-node random networks for GAND Approach
testing in Python

rEAGL
GAND

EAGL GAND

ER

β = 0
min 19.450 0.174 9.720

mean 20.559 0.202 10.549
LD max 22.362 0.202 10.549

p = 0.1
β = 1

min 19.091 0.172 13.522
mean 20.165 0.206 16.353
max 21.798 0.206 16.353

β = 0
min 66.217 0.626 24.285

mean 67.222 0.647 24.854
HD max 68.205 0.647 24.854

p = 0.5
β = 1

min 65.603 0.625 24.058
mean 68.297 0.695 25.039
max 70.996 0.695 25.039

BA

ma = 2
min 17.671 0.155 6.075

mean 18.072 0.179 6.843
LD max 19.567 0.179 6.843

n0 = 25
ma = n0

5

min 23.612 0.213 13.415
mean 24.173 0.238 14.274
max 26.052 0.238 14.274

ma = 2
min 37.808 0.345 4.223

mean 38.654 0.374 4.647
HD max 40.231 0.374 4.647

n0 = 55, 50
ma = n0

5

min 44.361 0.410 13.506
mean 45.911 0.448 14.518
max 49.643 0.608 15.756

WS

p = 0.1
min 13.294 0.113 12.383

mean 14.291 0.151 16.283
LD max 15.021 0.151 16.283
k = 4

p = 0.25
min 13.308 0.114 10.081

mean 13.692 0.138 10.882
max 15.608 0.138 10.882

p = 0.1
min 40.442 0.373 11.209

mean 42.256 0.406 14.507
HD max 46.669 0.406 14.507

k = 30
p = 0.25

min 41.104 0.382 10.141
mean 42.213 0.413 10.767
max 44.854 0.413 10.767

120

correlation between network density and average computation time (r2 = 0.76) with lower-

density networks requiring less time to compute the measures. The weighted MATLAB

implementation and both Python implementations had no correlation between network den-

sity and computation time (r2 < 0.07). The total completion times for the GAND Approach

are faster when implemented utilizing Python; however, because the GAND Approach is pro-

cessed in advance, the measure calculation times indicate that the MATLAB implementation

is faster.

The fast computation times of the GAND Approach demonstrate that it should be im-

plemented, provided the accuracy of the geodesics after a node’s removal is high. The total

number of differences, nδ, is computed for the output of the rEAGL procedure and the GAND

Approach, i.e., the number of instances for which the geodesic length after a node’s removal

is not equal in the two methods. In addition, the total difference, δT , between the geodesic

lengths in these instances is calculated, by subtracting the resultant GAND geodesic length

from the rEAGL geodesic length. The average difference δT is the ratio of the sum of the

differences to the total number of differences for a network instance,

δT =

0, if nδ = 0,

δT
nδ
, otherwise.

(3.8)

The accuracy, a, is computed by computing the ratio of the total number of differences to

the total number of geodesic lengths computed,

a = 1− nδ
n3
. (3.9)

The maximum, average, and minimum of each accuracy measure (i.e., number of differences,

total difference, average difference, and accuracy) for each of the weighted and unweighted

network instances tested are reported in Tables 38 and 39, respectively. The accuracy in

121

the tables is given as an integer value of 1 if there are no differences between the rEAGL

procedure and the GAND Approach across all replicates.

In the accuracy tables, it is apparent that the GAND Approach is less accurate for lower-

density network instances tested. The number of infinite differences between the actual

geodesic lengths and the GAND geodesic lengths appear more frequently in the lower-density

networks. The weighted network instances result in more infinite-length differences, but only

the higher-density instances for the BA structure exhibit such infinite differences. Further-

more, the average difference for the higher-density network instances was much smaller. The

unweighted network instances also demonstrated difficulty handling the lower densities with

infinite lengths appearing only in the LD rows of Table 39. The lower-density networks have

fewer arcs between the nodes, so there are fewer geodesic from which to select an alternative.

Coupled with the GAND Approach limitations stemming from EAGL input assumptions,

the lower-density network instances cause more discrepancies for the instances tested.

Table 40 provides the number of instances tested that the removal of a node resulted

in the GAND Approach claiming the network was disconnected when it was not. The

BA network structure had the largest number of incorrect infinite geodesic updates. This

result is not surprising since the nodes not included in the initial, fully connected group are

sparsely connected and would require a longer path to reach the initial group again, which

is exacerbated in the weighted network instances. The results confirm the observation that

the lower-density, weighted network structures provide challenges for the GAND Approach

because there are fewer arcs over which alternate geodesics can be identified.

3.4.5 Geodesics After Node Destruction Summary.

This section demonstrated the implementation of an approach to assess the impact of the

removal of each node in a network. The GAND Approach has the shortcoming that sufficient

geodesic information is not always available from the EAGL Algorithm inputs to generate

122

Table 38. Accuracy measures for weighted, 100-node random networks for GAND Approach

nδ δT δT a

ER

β = 0
min 774 1316 1.567 0.998

mean 1165 ∞ ∞ 0.999
LD max 1796 ∞ ∞ 0.999

p = 0.1
β = 1

min 1424 2870 1.653 0.995
mean 2335 ∞ ∞ 0.998
max 4834 ∞ ∞ 0.998

β = 0
min 306 326 1.040 1.000

mean 368 400 1.087 1.000
HD max 438 488 1.129 1.000

p = 0.5
β = 1

min 272 296 1.052 1.000
mean 361 393 1.090 1.000
max 450 490 1.122 1.000

BA

ma = 2
min 4214 ∞ ∞ 0.991

mean 6342 ∞ ∞ 0.994
LD max 8924 ∞ ∞ 0.994

n0 = 25
ma = n0

5

min 1438 ∞ ∞ 0.997
mean 2372 ∞ ∞ 0.998
max 3368 ∞ ∞ 0.998

ma = 2
min 3316 ∞ ∞ 0.994

mean 4736 ∞ ∞ 0.995
HD max 6408 ∞ ∞ 0.995

n0 = 55, 50
ma = n0

5

min 382 470 1.167 0.999
mean 660 ∞ ∞ 0.999
max 1276 ∞ ∞ 1.000

WS

p = 0.1
min 2836 ∞ ∞ 0.980

mean 6628 ∞ ∞ 0.993
LD max 19866 ∞ ∞ 0.993
k = 4

p = 0.25
min 1446 8732 4.366 0.994

mean 2721 ∞ ∞ 0.997
max 5788 ∞ ∞ 0.997

p = 0.1
min 318 388 1.129 0.999

mean 425 509 1.198 1.000
HD max 634 786 1.257 1.000

k = 30
p = 0.25

min 324 386 1.142 0.999
mean 426 512 1.200 1.000
max 520 616 1.269 1.000

123

Table 39. Accuracy measures for unweighted, 100-node random networks for GAND Approach

nδ δT δT a

ER

β = 0
min 0 0 0 1

mean 0 0 0 1
LD max 0 0 0 1

p = 0.1
β = 1

min 0 0 0 1
mean 1.6 ∞ ∞ 1.000
max 36 ∞ ∞ 1.000

β = 0
min 0 0 0 1

mean 0 0 0 1
HD max 0 0 0 1

p = 0.5
β = 1

min 0 0 0 1
mean 0 0 0 1
max 0 0 0 1

BA

ma = 2
min 0 0 0 1

mean 7.9 ∞ ∞ 1.000
LD max 22 ∞ ∞ 1.000

n0 = 25
ma = n0

5

min 0 0 0 1
mean 0 0 0 1
max 0 0 0 1

ma = 2
min 0 0 0 1

mean 0 0 0 1
HD max 0 0 0 1

n0 = 55, 50
ma = n0

5

min 0 0 0 1
mean 0 0 0 1
max 0 0 0 1

WS

p = 0.1
min 2 2 1 0.999

mean 63.5 ∞ ∞ 1.000
LD max 722 ∞ ∞ 1.000
k = 4

p = 0.25
min 0 0 0 1

mean 4.9 5.5 0.9 1.000
max 18 20 2 1.000

p = 0.1
min 0 0 0 1

mean 0 0 0 1
HD max 0 0 0 1

k = 30
p = 0.25

min 0 0 0 1
mean 0 0 0 1
max 0 0 0 1

124

Table 40. Number of instances of invalid infinite geodesic for 100-node random networks for
GAND Approach

Density Parameter Unweighted Weighted

ER

LD β = 0 0 11
p = 0.1 β = 1 1 60

HD β = 0 0 0
p = 0.5 β = 1 0 0

BA

LD ma = 2 41 595
n0 = 25 ma = n0

5
0 256

HD ma = 2 0 587
n0 = 55, 50 ma = n0

5
0 44

WS

LD p = 0.1 1 134
k = 4 p = 0.25 0 73
HD p = 0.1 0 0

k = 30 p = 0.25 0 0

the optimal updated geodesic length for some network topology instances. This limitation is

overcome by utilizing the algebraic connectivity measure to verify any solutions indicating

the network is disconnected. The MATLAB implementation of the GAND Approach ap-

pears to be more effective than the alternative implementations examined since the matrix

manipulation (for which MATLAB was created) enables faster nodal and network measure

calculations and can rapidly verify when secondary processing is required if the solution is

infinite. The GAND Approach provides an effective preprocessing step that yields defined

solutions regarding the impact of the removal of each node in the network.

The given implementation of the GAND Approach does not update the number of short-

est paths, the node dependencies, or the adjacency matrix. Future extensions of the approach

may include updating these values so the nodal and network measures (e.g., degree central-

ity, betweenness centrality, and clustering coefficients) can be readily computed; the nodal

measures that depend only on the lengths of geodesics can be computed for any single node

destroyed.

125

Future Work. When studying the impact of large-scale node removals to networks,

it is important to quickly characterize the connectedness of the residual network. Certain

measures are computed utilizing the eigenvalues and associated eigenvectors of the Laplacian

matrix, which are particularly useful when considering large-scale node removal sets. Recall

that the Laplacian matrix L(N) is defined as L(N) = Q(N)−A(N), where Q(N) denotes the

diagonal matrix whose entries are the degree of the nodes and A(N) denotes the adjacency

matrix of the network N . The number of components and their respective sizes within the

residual network after the large-scale node removal are computed using the eigenvalues and

associated eigenvectors of the Laplacian matrix of the residual network, L(N ′), where N ′ is

the network with the large-scale node set removed.

The number of eigenvalues of L(N ′) having value 0 indicates the number of components in

the network [48]. Furthermore, Ding et al. observed that the graph is disconnected between

the nodes at which the eigenvector changes value [23]. Therefore, the number of nodes in

each of the disconnected components can be found by counting the number of unique values

(within epsilon tolerance) of the eigenvector associated with any eigenvalue equal to zero.

Furthermore, the smallest non-zero eigenvalue of the Laplacian matrix indicates how well-

connected the largest component is; if the value is near zero, there exist few ties connecting

potential components. Thus, the eigenvalues of Laplacian matrix for the residual network

provide a measure of the impact to the network of the set’s removal. This computation is

processed quickly in software designed for matrix manipulation such as MATLAB.

This topic is not addressed in the open literature in terms of generating target lists for

attacking large portions of a network or assessing the impact to the residual network after

a large-scale attack. By applying these measures to the large-scale nodal removal problem,

analysts will have the tools to provide large-scale node removal impacts to decision makers

with regard to offensive and/or defensive tasks that require such information.

126

3.5 Summary

This chapter provides an array of approaches that allow an analyst to inform decision

makers which nodes to target for the largest impact on the network in question or for the

least impact. It demonstrated that measure computation time can be greatly reduced when

geodesic information is retained, that extending the information stored allows the calculation

of network measures just as quickly, and that utilizing this information allows the assess-

ment of each node’s removal from the network. Without understanding the relationship

between geodesics and the measures related to geodesic lengths, characterizing the impor-

tance of nodes within the network using nodal and/or network measures in a timely manner

is prohibitive.

In addition, the network information that is preprocessed can be extended to compute

additional measures in fractions of a second. The EAGL Algorithm compiles and stores the

necessary information required for the rapid computation of nodal and network measures.

The speed with which the measures are computed based on stored geodesic and dependency

information allows the modification of their matrix representations to quickly ascertain the

impact of node removal from the network to the measures of interest. The GAND Approach

provides a fast preprocessing step that yields good solutions regarding the impact of the

removal of each node in the network. These contributions are summarized in Table 41.

127

Table 41. Destroying Interdiction Task Contributions

Interdiction
Section Contribution Description

Task
Destroy 3.3.1 EAGL Algorithm The Extended All Geodesics

Lengths (EAGL) Algorithm takes
the features of previous algorithms
(i.e., retaining all geodesic and
predecessor information, com-
puting node dependencies, and
counting occurrences of nodes on
geodesics) to construct a more
robust algorithm.

3.4.1 GAND Approach The Geodesics After Node Destruc-
tion (GAND) Approach determines
the impact on the geodesic lengths
between all node pairs in the net-
work as a result of each node’s de-
struction.

128

IV. Destroy Interdiction Tasks

4.1 Introduction

Figure 13. Research Framework: Modeling Destroy Interdiction Tasks

This chapter develops a mathematical programming modeling framework for network

interdiction via the destruction of nodes. Thus, the research addresses the ‘destroy’ interdic-

tion task in the models approach of the research framework as depicted in Figure 13. The

models developed in this chapter extend typically utilized methods for arc interdiction. The

shortest path arc interdiction is a new approach for destroying arcs when also considering

the shortest paths of the network operator. The chapter describes an array of optimization

models for destroying arcs in a network while considering the network’s maximum flow or

shortest path(s).

Operational planners may choose to utilize interdiction tasks to target arcs. In the

physical sense, arcs may represent routes or points at which several infrastructures are located

in close proximity. Within social networks, arcs may represent ties between people that may

be targeted given the correct situation.

129

4.2 Maximum Flow Models

The network interdiction model of Wood [68] is a bilevel programming model which

utilizes a minimum capacity cut problem to determine an optimal arc cut set for the leader,

subject to a resource constraint that, if restrictive enough, allows some flow through the

network, which is minimized in the objective. The follower’s maximum flow problem is solved

implicitly. Consider a cut that is based on cost and is subsequently resource constrained in

such a way as to allow residual flow for the follower. The follower’s maximum flow problem

is no longer solved implicitly. Rather, decision variables indicating the flow across the nodes

in the network are required to explicitly determine the follower’s solution.

The standard minimum cut model does not require consideration for residual network

flow because the solution is always a cut set through which no flow is allowed. The flow

objective is included in the arc destroying model to illustrate its inclusion, confirm that flow

is interdicted, and as a reference for subsequent models. The formulation for the maximum

130

flow arc destroying problem (MAD) follows:

min
∑

(i,j)∈E

cijyij − λxts (4.1a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (4.1b)

us = 0, (4.1c)

ut = 1, (4.1d)∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, ∀i ∈ V, (4.1e)

xij ≤ bij(1− yij), ∀(i, j) ∈ E, (4.1f)

xij ≥ 0, ∀(i, j) ∈ E, (4.1g)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (4.1h)

ui ∈ {0, 1}, ∀i ∈ V. (4.1i)

The objective (4.1a) ensures that the leader’s minimum cost s-t cut set is selected while

maximizing the follower’s remaining source-to-terminus flow on the network, which will result

in xts = 0, and is included as a placeholder to inform subsequent models. The cost to interdict

arc (i, j) is represented by cij. The value of λ determines which solution methodology the

solver prefers. Larger values of λ cause the solver to utilize methods for maximum flow

solutions while smaller values of λ direct the optimization software to prefer minimum cut

solution methods.

The leader’s problem consists of the first term of the objective function and Constraints

(4.1b)-(4.1d) and (4.1h)-(4.1i). Constraint (4.1b) ensures that an s-t cut is identified. The

source node is identified in (4.1c). In Constraint (4.1d), the terminus node is assigned ut = 1

to enforce the cut between the source and terminus. Finally, Constraints (4.1h) and (4.1i)

ensure the leader’s decision variable values are binary.

131

The follower’s problem is the maximum flow problem and consists of the last term in the

objective function and Constraints (4.1e)-(4.1g). Constraint (4.1e) ensures flow conservation

at each node. The flow on each arc is non-negative (4.1g). Constraint (4.1f) ensures the flow

is zero if the leader interdicts the arc; otherwise it is bounded above by the arc’s capacity

bij.

Whereas the solutions to the MAD model will always result in zero flow for the follower’s

residual network, the weights of the leader and follower components of the objective function

are important. The value of λ associated with the follower’s part of the objective can account

for a weighting of the leader’s objective. Let λ1 and λ2 denote a weighting of the leader

and follower objectives, respectively. Then, by dividing both objectives by λ1, we have a

coefficient of 1 for the leader and λ =
λ2

λ1

for the given weight in the objective function. To

ensure that the leader has preemptive preference over the follower, the weights for λ1 and

λ2 can be determined by utilizing Sherali’s Algorithm 1 [58] where the preemptive weights

can be determined based on the upper bounds of the respective objectives and based on the

relationships established by Sherali and Soyster [59].

Consider a military battle being fought on three fronts and an adversary using four

supply depots from which to deliver military items. Figure 14 depicts this notional military

transportation network example as used by Ghare et al. [33] and Wood [68]. The capacity and

interdiction costs are enumerated in Table 42. When this problem is solved using the MAD

model, the solution is to interdict arcs {(2,9), (2,6), (3,6), (7,10), (11,14), (11,15), (8,12),

(5,12)} at a total interdiction cost of 34 with a maximum flow for the residual network of 0

units.

As noted, the maximum flow solution for any follower within the MAD model is 0 units

of flow because every arc in the cut set is targeted for destruction. The value of λ impacts

the solution times for the MAD model. Recall that the value of λ determines which objective

function component the solver prioritizes: the leader’s minimum cost cut, or the follower’s

132

Arc Capacity Cost Arc Capacity Cost
(1,2) 1000 100 (6,10) 60 7
(1,3) 1000 100 (7,10) 120 4
(1,4) 1000 100 (7,11) 150 6
(1,5) 1000 100 (8,11) 120 6
(2,6) 60 5 (8,12) 80 4
(2,9) 70 4 (9,13) 80 4
(2,7) 60 5 (9,14) 50 5
(3,6) 50 3 (10,13) 100 5
(3,7) 50 3 (10,14) 80 4
(3,8) 60 5 (11,14) 180 6
(4,7) 100 3 (11,15) 100 4
(4,8) 80 5 (12,14) 80 5
(5,7) 50 5 (12,15) 100 6
(5,8) 100 5 (13,16) 1000 100
(5,12) 80 4 (14,16) 1000 100
(6,9) 60 4 (15,16) 1000 100

Table 42. Data for the notional military transportation network in Figure 14 [33, 68]

Figure 14. A notional military transportation network [33, 68]

133

maximum flow. For intermediate values of λ, the solver will attempt to balance a combination

of the two objectives, resulting in extended solution times. Table 43 reports the mean solution

time and number of iterations for the network instances tested. A two-tailed paired-t test

statistic is utilized to determine whether there is a difference in the measure (i.e., mean

solution time or number of iterations) with λ = 0.001 or λ = 0.00001. Table 44 lists the

mean solution time and number of iterations for the network instances tested and the two-

tailed paired-t test statistic to determine whether there is a difference with λ = 0.001 or

λ = 1. In cases for which the p-value is less than 0.05, there is sufficient evidence at the 0.05

level of significance to reject the claim that there is no difference in the measure when the

λ-value increases to 1. For larger p-values, there is insufficient evidence at the 0.05 level of

significance to reject the claim of no difference in the measure when the λ-value increases to

1.

Examination of the p-values comparing λ = 0.001 and λ = 0.00001 for the mean solution

time and number of iterations are larger than 0.05 for all network cases tested. There is

insufficient evidence at the 0.05 level of significance to reject the claim of no difference in

the measure. Therefore, the decision to use either value is arbitrary, and the model will be

solved utilizing λ = 0.001 unless otherwise noted.

Comparison of λ = 0.001 and λ = 1 in the MAD model resulted in p-values for the

mean solution time and the number of iterations that are smaller than 0.05 for all network

types. There is sufficient evidence at the 0.05 level of significance to reject the claim of no

difference in the measure for the network instances tested. This result demonstrates the

value in ensuring the leader’s objective is preferred over the follower’s objective to reduce

solution times and leverage the solver’s efficiency in solving minimum cut problems.

Network density is graphed against solution times in Figure 15 for the network instances

tested with λ = 0.001. The line represents a linear approximation of the relationship between

density and solution time. For the networks tested, solution time increases with an associated

134

Figure 15. Density vs solution time for 100-node network instances tested

increase in network density. The coefficient of determination R2 between density and solution

time, given in parentheses in the legend of the chart for the tested network cases, is 0.729.

The large value of R2 suggests that there exists a strong linear relationship between density

and solution time when taking into account the variance over the 30 replicates of each case.

The number of iterations did not exhibit as strong a linear relationship (R2 = 0.321) with

network density for the networks instances tested.

135

Table 43. Comparison of results for MAD with λ = 0.001 and λ = 0.00001

Structure Case
λ = 0.001 λ = 0.00001 2-Tail p-value

Solved Mean Time Mean Its # Solved Mean Time Mean Its Time Iterations

ER

1 30 / 30 0.053 325.7 30 / 30 0.051 320.3 0.540 0.245
2 30 / 30 0.067 375.5 30 / 30 0.073 380.6 0.624 0.152
3 30 / 30 0.335 712.9 30 / 30 0.321 714.5 0.570 0.346
4 30 / 30 0.303 711.4 30 / 30 0.324 709.9 0.080 0.357

BA

5 30 / 30 0.040 33.3 30 / 30 0.040 33.3 0.683 1
6 30 / 30 0.060 128.9 30 / 30 0.059 128.9 0.717 1
7 30 / 30 0.140 84.6 30 / 30 0.138 84.6 0.348 1
8 30 / 30 0.174 259.4 30 / 30 0.178 259.4 0.309 1

WS

9 30 / 30 0.024 260.7 30 / 30 0.026 259.5 0.455 0.694
10 30 / 30 0.028 239.5 30 / 30 0.024 234.4 0.170 0.275
11 30 / 30 0.222 767.2 30 / 30 0.200 764.9 0.485 0.745
12 30 / 30 0.173 637.0 30 / 30 0.178 637.2 0.429 0.969

PNDCG

13 30 / 30 0.018 76.8 30 / 30 0.027 76.5 0.174 0.371
14 30 / 30 0.024 80.4 30 / 30 0.023 80.1 0.996 0.096
15 30 / 30 0.019 133.9 30 / 30 0.020 133.1 0.812 0.306
16 30 / 30 0.018 139.3 30 / 30 0.021 139.3 0.096 1
17 30 / 30 0.111 516.9 30 / 30 0.115 516.7 0.289 0.953
18 30 / 30 0.114 508.7 30 / 30 0.110 507.2 0.207 0.53

Grid
19 30 / 30 0.048 490.9 30 / 30 0.035 476.3 0.190 0.206
20 30 / 30 0.046 533.5 30 / 30 0.043 532.0 0.679 0.866
21 30 / 30 0.054 356.9 30 / 30 0.042 347.4 0.400 0.116

Star
22 30 / 30 0.026 298.6 30 / 30 0.026 298.1 0.756 0.463
23 30 / 30 0.020 171.5 30 / 30 0.020 171.5 0.987 1
24 30 / 30 0.029 371.3 30 / 30 0.025 371.7 0.033 0.916

136

Table 44. Comparison of results for MAD with λ = 0.001 and λ = 1

Structure Case
λ = 0.001 λ = 1 2-Tail p-value

Solved Mean Time Mean Its # Solved Mean Time Mean Its Time Iterations

ER

1 30 / 30 0.053 325.7 30 / 30 0.178 558.4 < 0.001 < 0.001
2 30 / 30 0.067 375.5 30 / 30 0.233 892.7 < 0.001 0.034
3 30 / 30 0.335 712.9 30 / 30 1.669 1210.3 < 0.001 < 0.001
4 30 / 30 0.303 711.4 30 / 30 1.498 1117.9 < 0.001 < 0.001

BA

5 30 / 30 0.040 33.3 30 / 30 0.052 50.9 0.002 < 0.001
6 30 / 30 0.060 128.9 30 / 30 0.064 163.2 0.075 0.026
7 30 / 30 0.140 84.6 30 / 30 0.174 103.9 0.072 0.019
8 30 / 30 0.174 259.4 30 / 30 0.179 326.5 0.492 < 0.001

WS

9 30 / 30 0.024 260.7 30 / 30 0.275 3099.4 < 0.001 0.002
10 30 / 30 0.028 239.5 30 / 30 0.158 865.3 < 0.001 0.007
11 30 / 30 0.222 767.2 30 / 30 0.718 974.1 < 0.001 < 0.001
12 30 / 30 0.173 637.0 30 / 30 0.713 880.2 < 0.001 < 0.001

PNDCG

13 30 / 30 0.018 76.8 30 / 30 0.023 97.5 0.065 0.012
14 30 / 30 0.024 80.4 30 / 30 0.025 86.2 0.788 0.017
15 30 / 30 0.019 133.9 30 / 30 0.078 890.8 0.023 0.175
16 30 / 30 0.018 139.3 30 / 30 0.052 208.4 < 0.001 < 0.001
17 30 / 30 0.111 516.9 30 / 30 0.324 692.4 < 0.001 < 0.001
18 30 / 30 0.114 508.7 30 / 30 0.318 671.3 < 0.001 < 0.001

Grid
19 30 / 30 0.048 490.9 30 / 30 94.241 2534908.4 < 0.001 < 0.001
20 30 / 30 0.046 533.5 30 / 30 3482.202 89744454.7 < 0.001 < 0.001
21 30 / 30 0.054 356.9 30 / 30 1.737 31788.8 < 0.001 < 0.001

Star
22 30 / 30 0.026 298.6 30 / 30 0.293 4084.3 0.025 0.048
23 30 / 30 0.020 171.5 30 / 30 0.127 339.4 < 0.001 < 0.001
24 30 / 30 0.029 371.3 30 / 30 0.618 9478.4 < 0.001 < 0.001

137

4.3 Shortest Path Models

Models have been utilized to represent interdicting arcs on the shortest path between

a source and a terminus. Golden [35], Fulkerson and Harding [31], and Israeli and Wood

[42] formulated similar models that solve the shortest path problem and either destroy an

arc or increase the length of a selected arc to maximize the overall length of the shortest

path. The model developed in this section considers interdicting the shortest path from a

minimum cost cut set perspective. The benefit of considering a minimum cost cut set is that

the model can be extended to interdict the k shortest paths.

The leader’s portion of the model is similar to the MAD model in that the leader utilizes

several decision variables to identify a cut set between the source and terminus. The leader’s

decision variables identify a single arc that is in the intersection of the minimum cost cut

set and the shortest path. This single arc to be targeted for destruction is indicated by

zij = 1. The objective is weighted to favor the leader’s minimum cut problem, which is

solved relatively quickly by optimization software. The remaining decision variables for the

leader, yij and ui, respectively represent the arcs in the cut set that are not interdicted and

the node partition to identify the cut set.

The follower’s problem is the shortest path formulation. A single unit of flow is introduced

at the source and a demand of one unit is required at the terminus. The follower’s decision

variable xij indicates which arcs the single commodity traverses to reach the terminus. By

minimizing the sum of the lengths of the arcs traversed, a shortest path is identified.

The cut set is partitioned into the set of nodes that are not interdicted and a single arc

that is targeted for destruction. The objective determines the minimum cost cut set which

includes a single arc through which the shortest path travels. The cost to interdict arc (i, j)

and the distance from node i to node j are represented by cij and dij, respectively. The

138

formulation for the shortest path arc destroying problem (SAD) follows:

min
∑

(i,j)∈E

cij(yij + zij) + λ
∑

(i,j)∈E

dijxij (4.2a)

s.t. ui − uj + yij + zij ≥ 0, ∀(i, j) ∈ E, (4.2b)

us = 0, (4.2c)

ut = 1, (4.2d)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, (4.2e)

xij ≤ 1− yij, ∀(i, j) ∈ E, (4.2f)∑
(i,j)∈E

zij = 1, (4.2g)

xij ∈ {0, 1}, ∀(i, j) ∈ E, (4.2h)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (4.2i)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (4.2j)

ui ∈ {0, 1}, ∀i ∈ V. (4.2k)

The objective (4.2a) ensures that the leader targets the arc that is contained in the inter-

section of the minimum cost cut set and the follower’s shortest s-t path. The value of λ

should be selected to ensure the model prefers the leader’s minimum cut solution method.

To ensure that the leader has preemptive preference over the follower, the weight for λ can

be determined by utilizing Sherali’s Algorithm 1 [58].

The leader’s (attacker’s) problem consists of the first term of the objective function and

constraints (4.2b)-(4.2d), which are as described for the MAD model.

139

The follower is concerned with the shortest path problem, consisting of the last term in the

objective function and constraints (4.2e)-(4.2f). Constraints (4.2e) ensure flow conservation

at each node, a single unit of flow originating from the source, and a single unit of flow

terminating at the destination. Constraint (4.2f) ensures the arc is not on the shortest

path if the leader interdicts the arc. Notice that a single arc (indicated by the non-zero zij

variable) is contained in the cut set and is on the shortest path.

Consider again the notional military transportation network example given in Figure 14

and Table 42. When this problem is solved using the SAD model, the arc that should

be targeted for interdiction is arc (2,9) at a cost of 4 units. The minimum cost cut set

contains arcs {(2,9), (2,6), (3,6), (7,10), (11,14), (11,15), (8,12), (5,12)} with a total inter-

diction cost of 34 units. The shortest path has a length of 120 units and traverses arcs

(1, 2), (2, 9), (9, 14), (14, 16).

Notice that the targeted arc for the notional example has the smallest interdiction cost

along the shortest path. However, the arc selected for targeting is not necessarily the min-

imum cost arc on the shortest path. Moreover, the model is limited in that it does not

indicate the increase in shortest path length in the residual network. Further, notice that

the objective function value does not calculate the interdiction cost associated with targeting

the node indicated by the z-variable.

These drawbacks may render the single shortest path problem less desirable, but they are

required to allow the interdiction of more than one shortest path. A problem closely related

to the SAD model is to determine the k arcs that should be targeted so as to interdict the

k shortest arc independent paths from the source to the terminus. If the number of arcs

contained in the cut set is less than or equal to k, the minimum cost cut set interdicts all

shortest paths between the source and terminus. The decision variables are as described

for the SAD model. The x-variable is indexed to account for the k multiple paths: x`ij

140

takes value 1 if arc (i, j) is on the `th shortest arc-independent path from the source to the

terminus and has a value of 0, otherwise.

In this model, only arc-independent paths are considered. In other words, the k shortest

paths will consider paths that do not contain any arcs in common. To ensure the paths

determined in the model are arc-independent, an arc that is contained in a shortest path

may not be utilized for another path. Therefore, the x-variable must by constrained as

follows

x`ij ≤ 1−
`−1∑
h=1

xhij,∀(i, j) ∈ E,∀` = 2, . . . , k.

141

The formulation for the k-shortest arc-independent paths arc destroying problem (SAD-kI)

follows:

min
∑

(i,j)∈E

cij(yij + zij) + λ

k∑
`=1

∑
(i,j)∈E

dijx
`
ij (4.3a)

s.t. ui − uj + yij + zij ≥ 0, ∀(i, j) ∈ E, (4.3b)

us = 0, (4.3c)

ut = 1, (4.3d)

∑
j:(i,j)∈E

x`ij −
∑

j:(j,i)∈E

x`ji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, ∀` = 1, . . . , k, (4.3e)

x`ij ≤ 1− yij, ∀(i, j) ∈ E,∀` = 1, . . . , k, (4.3f)∑
(i,j)∈E

zij = k, (4.3g)

x`ij ≤ 1−
`−1∑
h=1

xhij ∀(i, j) ∈ E,∀` = 2, . . . , k, (4.3h)

x`ij ∈ {0, 1}, ∀(i, j) ∈ E,∀` = 1, . . . , k, (4.3i)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (4.3j)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (4.3k)

ui ∈ {0, 1}, ∀i ∈ V. (4.3l)

The SAD-kI model identifies the minimum cost cut set and further identifies the k arcs in

the cut set that interdict the k arc-independent shortest paths. The decision variable z takes

value 1 for the 1st through kth shortest paths.

Constraint (4.3b) ensures a minimum cost cut set and selects the arcs in the set along

each of the k arc-independent shortest paths; i.e., the k shortest paths do not contain any

142

arcs in common. It is possible that multiple paths traverse the same node, but the constraint

ensures that an arc is utilized only once in a shortest path. Constraint (4.3h) ensures that arcs

utilized for shorter s-t paths are not traversed for subsequent shortest paths. All remaining

constraints are as described for the SAD model.

In the context of the notional military transportation network example given in Figure 14

and Table 42, the k = 3 shortest paths are determined using the SAD-kI model. To interdict

the k shortest, arc independent paths, arcs {(2,9), (3,6), (5,12)} should be targeted for

destruction at a cost of 11 units. The minimum cut solution (indicated via the y- and z-

variables) is to interdict arcs {(2,9), (2,6), (3,6), (7,10), (11,14), (11,15), (8,12), (5,12)} at

a total interdiction cost of 34. The shortest path utilizing the capacities given in the table

as distances is 120 units in length, which is the solution for the SAD model, and traverses

arcs (1, 2), (2, 9), (9, 14), (14, 16). The remaining two shortest paths respectively traverse

arcs (1, 5), (5, 12), (12, 15), (15, 16) and (1, 3), (3, 6), (6, 9), (9, 13), (13, 16) with costs of 180

and 190 units. The model is infeasible for k = 4 indicating that there are no more than three

arc-independent s-t paths. In this network instance, although there are three destination

nodes for the supplies, the artificially installed arcs from each of nodes 13, 14, and 15 to

node 16 are included in the limitation of arc independent paths, so there are no additional

paths for the model to select. This feature of the model, while a drawback for this particular

instance, may be a benefit for discovering bottlenecks in other networks of interest.

The drawback of utilizing arc-independent paths is illustrated using a notional network.

Consider the network depicted in Figure 16. The arc interdiction costs are indicated above

each arc in the network. Assume the length of each arc is 1 unit. The minimum cut set

solution for the SAD-kI model with k = 1 is to interdict arcs (1,3) and (2,3) at a cost of

2 units. Either arc in the cut set is along the shortest path, so the model may arbitrarily

select arc (1,3) to be the targeted arc. The solution when k = 2 is infeasible since arc (3, t)

143

Figure 16. Notional network example with arc-independence

is already along a path that is interdicted. This example illustrates the necessity to consider

an alternative approach.

The SAD-kI model is extended to relax the constraint of arc-independence. The decision

variable z also takes an additional index so it is related to the k shortest paths. Let z`ij

indicate whether arc (i, j) is on the `th shortest path and is included in the cut set; i.e., arc

(i, j) is targeted to interdict the `th shortest path. The k shortest path destroy model that

144

does not utilize arc independence (SAD-k) follows:

min
∑

(i,j)∈E

cij

(
yij +

k∑
`=1

z`ij

)
+ λ

k∑
`=1

∑
(i,j)∈E

dijx
`
ij (4.4a)

s.t. ui − uj + yij +
k∑
`=1

z`ij ≥ 0, ∀(i, j) ∈ E, (4.4b)

us = 0, (4.4c)

ut = 1, (4.4d)

∑
j:(i,j)∈E

x`ij −
∑

j:(j,i)∈E

x`ji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, ∀` = 1, . . . , k, (4.4e)

x`ij ≤ 1− yij, ∀(i, j) ∈ E,∀` = 1, . . . , k, (4.4f)

k∑
`=1

∑
(i,j)∈E

z`ij = k, (4.4g)

∑
(i,j)∈E

z`ij = 1, ∀` = 1, . . . , k, (4.4h)

x`ij ≤ 1−
∑
h6=`

zhij ∀(i, j) ∈ E,∀` = 1, . . . , k, (4.4i)

x`ij ∈ {0, 1}, ∀(i, j) ∈ E,∀` = 1, . . . , k, (4.4j)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (4.4k)

z`ij ∈ {0, 1}, ∀(i, j) ∈ E, (4.4l)

ui ∈ {0, 1}, ∀i ∈ V. (4.4m)

The SAD-k model identifies the minimum cost cut set and further identifies the k arcs in

the cut set that interdict the k shortest paths, taking into account the arc interdicted for

145

the shortest path. Note that the ` index does not force the k shortest paths to be ordered

by the index. Additional constraints are required to order the shortest paths.

Constraints (4.4b) and (4.4f) ensure a minimum cost cut set is selected containing arcs

along each the k shortest paths; i.e., the k shortest paths do not contain arcs within the

cut in common. For each of the k shortest paths, a single arc on the path is allowed in the

cut set via Constraints (4.4f) and (4.4h). All remaining constraints are as described for the

SAD-kI model.

The example network depicted in Figure 14 and Table 42 representing a notional mil-

itary transportation network is solved with the SAD-k model with k = 3. The arcs to

target are {(2,9), (3,6), (5,12)} at a total cost of 11 units. The k shortest paths have

respective lengths of 120, 160, and 160 units and traverse arcs (1, 2), (2, 9), (9, 14), (14, 16),

(1, 3), (3, 6), (6, 9), (9, 14), (14, 16), and (1, 5), (5, 12), (12, 14), (14, 16), respectively. Note that

the shortest paths are not path independent and have arcs in common. The model ensures

that the shortest paths traverse the cut set via independent arcs. The cut set (indicated

via the y and z variables) contains arcs {(2,9), (2,6), (3,6), (7,10), (11,14), (11,15), (8,12),

(5,12)} which would cost 34 units to interdict. In contrast to the SAD-kI model, the SAD-k

model is feasible for k = 4 as there is an additional shortest path through the cut set. In

fact, if the value of k is larger than the size of the minimum cost cut set, a larger cut set

is allowed so as to identify the appropriate number of shortest paths. There is, of course, a

k-value at which the model will be infeasible; however, the model will have to enumerate all

shortest paths to identify it, which would be inefficient.

The leader’s portion of the arc interdiction models in this chapter can be extended as

described by Kennedy et al. [45] to target nodes rather than arcs. Additionally, Kennedy et

al. demonstrate extending the leader’s cut set model to target both nodes and arcs [45].

146

4.4 Summary

This chapter developed a number of models for destroying arcs in a network. The con-

tributions are summarized in Table 45. Models representing arc interdiction were developed

to determine the arcs that should be targeted to interdict the k shortest paths. In the next

chapter, network diverting tasks are considered.

Table 45. Destroying Interdiction Task Contributions

Interdiction
Section Contribution Description

Task
Destroy 4.2 MAD The maximum flow arc destroy-

ing model ensures that the leader’s
minimum cost source-terminus cut
set is selected eliminating the fol-
lower’s flow.

4.3 SAD The shortest path arc destroying
model identifies a single arc in the
intersection of the leader’s source-
terminus cut set and the follower’s
shortest path.

4.3 SAD-kI Extends SAD model.
The model selects k arcs in the
leader’s minimum cost cut set
to interdict the k shortest arc-
independent paths.

4.3 SAD-k Extends SAD model.
The model identifies the k arcs in
the leader’s minimum cut set that
interdict the follower’s k shortest
paths.

147

V. Divert Interdiction Tasks

5.1 Introduction

Figure 17. Research Framework: Modeling Divert Interdiction Tasks

In this chapter, a network interdiction modeling framework is developed for diverting

network resources, flow, or traffic away from (i.e., not to be routed to or through) a predefined

set of nodes. This chapter addresses the ‘divert’ interdiction task within the models approach

of the research framework as depicted in Figure 17.

In the open literature, a great deal of research has examined the network diversion prob-

lem, which is summarized in Section 2.3.2 of the literature review. However, these models

actually align with the channeling objective for interdiction tasks within joint doctrine.

Channeling is forcing the enemy to move forces, supplies, or communications along specific,

more exploitable routes [1:p. I-8].

This chapter is concerned with solving the network diverting problem (NDP). Given a

network topology and a designated source-terminus pair, an actor (leader) seeks to divert

a path or flow from a set of nodes, termed the divert set, by affecting the network’s arcs

and/or nodes. Subsequently, a network operator (follower) seeks to optimize the path or

148

flow of the residual network. The divert set may be used to model targeting preferences in

military campaign planning. Conversely, the divert set can model critical assets that must

be defended. The NDP is solved over a single-layered network while utilizing the destruction

of nodes and/or arcs.

The NDP is illustrated in the context of a convoy commander’s decision process. The

road network through which the convoy travels contains areas occupied by adversaries with

various levels of forces and capabilities. The commander seeks to route the convoy safely to

its destination by diverting the route from areas that have the largest risk of enemy action.

In this scenario, the divert set represents the regions through which travel is too risky, and

the convoy commander can be considered to be both the leader and follower, diverting from

hostilities and routing the convoy along the shortest path with acceptable risk.

Alternatively, consider a military conflict within a city. The city’s roads and bridges form

the arcs of the network and the road intersections are the nodes. The leader is an insurgent

force, and the follower is the military’s security element patrolling the city’s streets. The

insurgent forces block roads or bridges to force the security patrols onto alternate routes

and away from the intersection where a guerrilla raid is planned against a third party.

The security element seeks a maximum flow of patrols through the city’s streets, which are

partially blocked by the insurgents. The result of the interdiction actions is that military

patrols are diverted from the intersection of the insurgent raid.

A non-military illustration of the network diverting problem involves a city that will host

a festival on a portion of its downtown streets. Due to the large volume of pedestrians,

vehicle traffic should be diverted from the area. The city manager’s office must select the

roads and bridges to close for non-pedestrian traffic to divert all vehicle traffic from the

festival. The roads and bridges form the network (intersections are nodes), the city manager

is the leader, and the traffic is the follower. The divert set consists of the intersections where

149

the festival will take place. The maximum flow on the network represents traffic flow, and

the city manager desires to eliminate flow through the divert set.

Another application of the network diverting problem involves determining detour routes

around closed roads. Alternatively, a supply chain may seek to avoid certain countries or

routes to avoid tariffs, taxes or tolls. In addition, when it is determined that a portion of

a communications network has been hacked or compromised, it is vital that important or

sensitive information be routed around such sections of the network. Finally, the freight

industry seeks to avoid large metropolitan areas during peak traffic times to reduce the risk

of being delayed by the congestion or to avoid toll roads or bridges.

The network diverting problem requires that both the leader and the follower be included

in any models that are generated. It is assumed that the leader must allow the follower to

divert, i.e., a shortest path or maximum flow for the follower will exist in the residual network.

Therefore, the follower’s problem is a consideration for the leader when making interdiction

decisions. Likewise, the follower optimizes the path or flow on the residual network only

after the leader has made a decision. For these reasons, both the leader and follower are

included in the model to solve the network diverting problem.

A bilevel programming problem is the mathematical formulation of a non-cooperative

sequential game between two players (termed leader and follower) who take turns in a one-

move game in which each player is assumed to have all information about the problem. In

economic literature, this is a Stackelberg game. Let x and y denote the decision variables of

the leader and follower, respectively. The objective functions of the leader and follower are

denoted F (x, y) and f(x, y), respectively. The constraint functions of the leader and follower

are respectively denoted G(x, y) and g(x, y). The general mathematical formulation [5:p. 6]

150

is

min
x∈X

F (x, y)

s.t. G(x, y) ≤ 0,

min
y∈Y

f(x, y),

s.t. g(x, y) ≤ 0.

Note that there is an optimization problem with the constraints. The second optimization

problem, min
y∈Y

f(x, y), is typically called the lower-level, inner, or follower’s problem. The

context of the NDP fits nicely into this formulation.

First, consider the leader’s problem. It is assumed that the network has no negative

cycles, the divert set contains only nodes, and the attacker targets only arcs. The objective

of the attacker is to eliminate flow to the divert set. The overall flow from the source to the

terminus is not the main consideration for the leader. One method to eliminate flow in a

network is to identify a cut set. In this case the attacker seeks to cut the source s from the

divert set D. Alternatively, the attacker may cut the divert set from the terminus t. The

resulting s-D or D-t cut accomplishes the goal of diverting flow from D. To ensure diverting,

the leader will not select an interdiction strategy that results in an s-t network cut.

The choice of making the cut on the source or terminus side of D is arbitrary but may

not be equivalent; there may be cost or non-quantifiable reasons for selecting one over the

other. As such, it may be advisable to solve both problems and select the one with the

smallest cost. Unless noted otherwise, a s-D cut is used in the remainder of this work. The

same methodology applies for D-t cuts.

Within this research, a cut set is utilized to separate the divert set from the rest of the

network. This task may be completed by utilizing the isolation set problem. The leader’s

problem would utilize an isolation model similar to Bellmore et al. [7] as well as Herbranson

151

et al. [40]. While this approach is not utilized in this research, it may be a fruitful avenue

for future research.

Consider the follower’s problem. The follower employs the standard shortest path or

maximum flow formulation subject to the needs of a particular instance or scenario. The

leader attempts to destroy arcs and/or nodes to halt flow to the divert set if the follower’s

objective is maximizing flow or to disallow a shortest path to traverse the divert set if the

follower is minimizing shortest path length. The follower must react to the decisions of the

leader, so the leader’s decisions influence the corresponding formulation.

In the bilevel programming formulation of the network diverting problem, the leader’s

minimum cut problem takes the place of F (objective) and G (constraints). The appropriate

shortest path or maximum flow formulation is used for the follower, with the follower’s

problem taking the place of f (objective) and g (constraints).

Bracken and McGill [9] discuss the fact the leader decides first and then the follower, given

that both are assumed to have complete knowledge of the other’s objective and constraints.

This is valid because, regardless of the choice the follower makes, the leader’s optimization

problem must be feasible for the follower’s problem. Thus, whether the leader chooses first

or the leader and follower choose simultaneously, the solution is the same. Because the

decision variables for the leader and follower in network diverting models can be determined

simultaneously, a single-objective multi-criteria mathematical program is utilized rather than

a bilevel programming formulation.

The remainder of the chapter proceeds as follows. The network diverting problem is

formulated for maximum flow networks. Next, shortest path models are considered for

network diverting. In each of these sections, testing of several network structures is conducted

to demonstrate the models’ utility. Then, model extensions are presented for both flow and

path models. Finally, the relationship between diverting and channeling is explored for

directed networks.

152

5.2 Maximum Flow Diverting

The NDP is formulated by partitioning the model into the leader’s problem and the

follower’s problem. Recall that D denotes the divert set. The leader’s problem is formulated

as the typical minimum cut [6:p.598] and is similar to the presentation of Wood [68]. The

leader’s decision variable yij indicates whether arc (i, j) is interdicted (yij = 1) or not (yij =

0). The variable ui denotes whether node i is on the source-side of the s-D cut (ui = 0)

or the D-side (ui = 1). The follower’s problem is formulated using the typical maximum

flow model that adds an artificial, unbounded capacity return arc from the destination to

the source [6:p. 596]. The follower’s decision variable xts indicates the flow on the return

arc (t, s). The return arc is added to the model from the terminus to the source and flow

is maximized due to the flow conservation constraints. The augmented set of arcs in the

network is E ′ = E ∪ (t, s).

A constraint is included in the maximum flow NDP model to ensure that the leader

allows at least some flow for the follower. Without this constraint the leader’s interdiction

strategy might not result in diverting.

The follower’s objective is combined with the leader’s by subtracting it, thus preserving

its maximization:

∑
(i,j)∈A

cijyij − λxts

(leader) (follower)

The magnitude of the weight of the follower’s objective is given by λ and can be considered

a cooperation weight. Typically, the leader has no concern for the follower’s objective value

(non-cooperative assumption). However, in the festival example, the city manager may

153

choose to allow less restrictive traffic patterns by changing the value of λ. Increasing λ gives

a follower more relative influence and is equivalent to a relaxing assumption.

Under non-cooperative conditions, care must be taken to ensure that the leader’s objec-

tive is preferred over the follower’s, i.e., the leader decides first. This is accomplished by

assigning the weight of the follower’s objective small enough that, no matter the costs or

capacities, the leader’s objective dominates the objective. Moreover, the value of λ deter-

mines which methodology the solver will utilize. When the value is very small, the leader’s

minimum cut objective will be the primary feature the solver optimizes. An added benefit

is that minimum cut models typically solve quickly.

The formulation for the maximum flow network diverting problem for arcs only (MNDP-

a) follows:

min
∑

(i,j)∈E

cijyij − λxts (5.1a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (5.1b)

us = 0, (5.1c)

uk = 1, ∀k ∈ D ⊂ V, (5.1d)∑
j:(i,j)∈E′

xij −
∑

j:(j,i)∈E′
xji = 0, ∀i ∈ V, (5.1e)

xij ≤ bij(1− yij), ∀(i, j) ∈ E, (5.1f)

xij ≥ 0, ∀(i, j) ∈ E, (5.1g)

xts ≥ 1, (5.1h)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (5.1i)

ui ∈ {0, 1}, ∀i ∈ V. (5.1j)

154

The objective (5.1a) ensures that the leader’s minimum cost s-D cut set is selected while

maximizing the remaining source-to-terminus flow on the network. The cost to interdict arc

(i, j) is represented by cij. To ensure that the leader has preemptive preference over the

follower, the weight for λ can be determined by utilizing Sherali’s Algorithm 1 [58].

The leader’s problem consists of the first term of the objective function and constraints

(5.1b)-(5.1d) and (5.1h)-(5.1j). Constraint (5.1b) ensures that a cut is employed. The source

nodes are identified in (5.1c). In Constraint (5.1d) the divert set D is treated as a destination

in the minimum cut formulation and the nodes in the divert set are assigned uk = 1 to enforce

the cut after the source but before (and outside) the divert set. Notice that the nodes in the

divert set can not be interdicted even if nodal interdiction is allowed. Finally, Constraints

(5.1i) and (5.1j) ensure the leader’s decision variable values are binary.

The follower’s problem is the maximum flow problem and consists of the last term in the

objective function and constraints (5.1e)-(5.1g). Constraint (5.1e) ensures flow conservation

at each node. The flow on each arc is non-negative (5.1g). Constraint (5.1f) ensures the flow

is zero if the leader interdicts the arc, otherwise it is bounded above by the arc’s capacity

bij. Constraint (5.1h) enforces the assumption that a flow will exist for the follower in the

residual network.

To modify the formulation to find a D-t cut, the only change is to Constraints (5.1c) and

(5.1d). To enforce such a cut, these are changed to ut = 1 and uk = 0,∀k ∈ D ⊂ N , thus

forcing a cut between the divert set and the terminus.

In practice, it is only necessary that the yij- or ui-variables be binary to ensure the

leader’s decision takes a value of 0 or 1 [19]. Therefore, since there are fewer nodes than

arcs, the ui-variables are restricted to be binary-valued and the yij-variables are continuous.

In addition, provided the arc capacities are integer-valued, the xij-variables will take on

integer values and are continuous in the model.

155

Figure 18. Example Network

A simple illustration demonstrates that a leader must be open to considering either s-D

or D-t cuts. Consider the network in Figure 18 with a divert set consisting of nodes 11 and

13. The interdiction cost of every arc is one unit. The minimum s-D cut (that also allows

a diverting flow for the follower) requires three arc cuts (arcs {(6,11), (8,11), (10,13)}) to

eliminate flow to the divert set. On the other hand, the minimum D-t cut would require

only one arc cut (arc (13,14)). Both solutions ensure there is no flow to the divert set via

the flow conservation constraints, but unless there are non-quantified reasons such as the

decision maker’s preference, the leader should select the D-t cut formulation and solution as

it results in a lower cost.

A bound for the leader’s problem can be determined by examining the divert set. A

worst-case bound for the interdiction cost is the sum of the interdiction costs of all arcs

entering (or leaving) the divert set. A lower cost interdiction strategy may be available, but

it can be no larger since the leader will select arcs to interdict so as to cut flow into (or

equivalently out of) the divert set, driving the total interdiction cost down as sought by the

objective. The choice of the inbound or outbound arcs of the divert set should align with the

cut chosen in the model. If the s-D cut is modeled, inbound arc costs should be summed.

156

Figure 19. A notional directed network and possible divert set

Conversely, if a D-t cut is modeled, a cut consisting of the outbound arcs must be used to

determine the bound.

5.2.1 Numerical Examples.

Numerical examples illustrate the MNDP-a models. Consider the directed network de-

picted in Figure 19 with shaded divert set D = {2, 4, 6}. Each arc has a unit interdiction

cost and capacity. The optimal solution of the MNDP-a model is a cut cost to the leader of

2 units with the follower’s maximum flow being 1. The cut consists of arcs (1,2) and (3,4).

For this notional network topology, there exists an equivalent minimum cost solution which

eliminates all network flow, but it does not allow diverting and may not be selected.

Next, consider a military battle being fought on three fronts and an adversary using four

supply depots from which to deliver military items. Figure 20 depicts this notional military

transportation network example as used by Ghare et al. [33] and Wood [68]. The capacity

and interdiction costs are enumerated in Table 46. Suppose that reports indicate that the

battle will change so that the main fronts will now be at nodes 9 and 10. Given this new

information, the divert set would be the new battle fronts and the goal is to ensure the

adversary cannot provide supplies to the new battle space. When this problem is solved

157

Arc Capacity Cost Arc Capacity Cost
(1,2) 1000 100 (6,10) 60 7
(1,3) 1000 100 (7,10) 120 4
(1,4) 1000 100 (7,11) 150 6
(1,5) 1000 100 (8,11) 120 6
(2,6) 60 5 (8,12) 80 4
(2,9) 70 4 (9,13) 80 4
(2,7) 60 5 (9,14) 50 5
(3,6) 50 3 (10,13) 100 5
(3,7) 50 3 (10,14) 80 4
(3,8) 60 5 (11,14) 180 6
(4,7) 100 3 (11,15) 100 4
(4,8) 80 5 (12,14) 80 5
(5,7) 50 5 (12,15) 100 6
(5,8) 100 5 (13,16) 1000 100
(5,12) 80 4 (14,16) 1000 100
(6,9) 60 4 (15,16) 1000 100

Table 46. Data for the notional military transportation network in Figure 20 [33, 68]

Figure 20. A notional military transportation network [33, 68]

158

using the MNDP-a model, the solution is to interdict arcs {(2,9), (2,6), (3,6), (7,10)} at a

total interdiction cost of 16. The maximum flow for the residual network is 430 units.

159

5.2.2 Testing and Results.

The MNDP-a model is tested on network instances that are generated as described in

Appendix A. The parameters for each network structure utilized are given in Table 47. For

each of the 24 network structure cases listed, 10 replicates were generated. For each replicate,

10 unique divert sets were constructed using the following procedure.

An arbitrary node not connected to the source or terminus is placed in the set J . Subse-

quently, a node that is connected to the set J (and not connected to the source or terminus)

is added to the set. This is repeated until there are between 5 and 10 nodes in the set. In

Table 47. Parameter settings for 100-node random network structures

Structure Parameters Case Mean Density

ER

β = 0, p = 0.1 1 0.098
β = 1, p = 0.1 2 0.099
β = 0, p = 0.5 3 0.5
β = 1, p = 0.5 4 0.502

BA

ma = 2, n0 = 25 5 0.091
ma = 5, n0 = 25 6 0.136
ma = 2, n0 = 55 7 0.318
ma = 10, n0 = 50 8 0.348

WS

k = 4, p = 0.10 9 0.04
k = 4, p = 0.25 10 0.04
k = 30, p = 0.10 11 0.303
k = 30, p = 0.25 12 0.303

PNDCG

β = 0, α = 2.35 13 0.025
β = 1, α = 2.35 14 0.025
β = 0, dist = U3,5 15 0.03
β = 1, dist = U3,5 16 0.03
β = 0, dist = U20,5 17 0.202
β = 1, dist = U20,5 18 0.202

Grid
10× 10 19 0.037
5× 20 20 0.038
20× 5 21 0.035

Star
10× 10 22 0.04
5× 20 23 0.04
20× 5 24 0.04

160

some instances, the size of the set is allowed to contain fewer nodes because there exist no

other nodes connected to the set.

The values of the interdiction cost-weight and the capacity-weight assigned to each arc

in the network are selected using a discrete (integer) uniform distribution having a range

between 1 and 10, inclusively.

The MNDP-a model is solved for the various random network instances using IBMr

ILOGr CPLEXr Optimization Studio V12.6. For each instance, two solutions are deter-

mined. First, the MNDP-a model is solved with no initial solution provided. Second, the

MNDP-a model is solved using the worst-case bound of cutting all inbound arcs to the divert

set for s-D model. Alternatively, the MNDP-a model is altered and solved using a D-t cut

and the outbound arcs from the divert set are utilized as the alternate initial solution.

The solutions when the MNDP-a model (s-D cut) is solved both without an initial

solution and utilizing the initial solution of the worst-case cut (all arcs into the divert set)

are compared in Table 48. The solutions when the MNDP-a model (D-t cut) is solved

having no initial solution and utilizing the worst-case cut (all arcs out of the divert set)

as the initial solution are compared in Table 49. Finally, the s-D and D-t cut models are

compared to determine whether there is a difference in the solution values or computation

times in Table 50. For each of the solution approaches, the number of instances solved to

optimality, mean solution time, and solution time standard deviation are reported. Moreover,

the number of network instances that resulted in unequal solution values is tabulated. The

average difference, if one exists, is also included.

For each of the comparisons, a two-tailed paired-t test statistic is utilized to determine

whether there is a difference in the solution times when comparing the two alternatives.

In cases when the p-value is less than 0.05, there is sufficient evidence at the 0.05 level of

significance to reject the claim that there is no difference in the solution times. For larger

161

p-values, there is insufficient evidence at the 0.05 level of significance to reject the claim of

no difference in the solution times.

Examination of the p-values comparing mean solution times for either s-D or D-t cuts

with and without initial solutions in Tables 48 and 49, respectively, show values larger than

0.05 for nearly all network cases tested. Within the tests cases with smaller p-values, three

cases suggest shorter solution times when utilizing no initial solution, whereas four cases

suggest that providing an initial worst-case solution leads to faster solutions. Therefore, there

is insufficient evidence at the 0.05 level of significance to reject the claim of no difference in

the solution times in the cases tested. The decision to use initial solutions related to either

inbound or outbound arc cuts versus providing no initial solution is arbitrary concerning

solution times for the network instances tested.

The p-values when comparing the solution times of the s-D and D-t cut models suggest

that, for the network instances tested, there may be benefit to selecting one over the other

for a given network structure. For example, for the BA network structure cases tested, there

is sufficient evidence at the 0.05 level of significance to reject the claim of no difference in

the solution times. Thus, these results suggest that the s-D cut model is preferred over the

D-t cut model for the BA networks tested. The construction of the BA network structure

informs this tendency. The high density of arcs close to the source may allow more rapid

identification of cuts for the s-D model, whereas the sparseness of the network outside the

initial set of nodes in the construction of these networks may prevent the model from quickly

selecting arcs for the cut in the D-t model.

Furthermore, for the network instances tested, the D-t model yielded an optimal solution

in every case; the s-D model did not yield optimal solutions for every test. A general

conclusion is difficult to provide. Perhaps additional testing can clarify whether there exists

skewing in the random selection of nodes included in the divert sets tested. However, this

result does reveal the importance of decision makers being open to solutions from either

162

model. Additionally, it demonstrates that analysts should examine all possible models before

making recommendations to a decision maker if it is practical to do so.

The grid network cases tested highlight this observation. There is a solution value de-

crease in each of the network cases tested (i.e., 10× 10, 5× 20, and 20× 5 grid structures).

That is, the D-t solution values require less costs as indicated by the average change value

being larger than 1. A change near the value of λ suggests that the arc cut required the

same interdiction cost but yielded a solution that utilized a shortest path length different

than the s-D model solution. For the tested network instances, the D-t cuts identified arc

cuts that are, on average, 3 cost units less expensive. In all other network structure cases

tested, four test instances observed a difference in solution values. The difference for these

instances was the result of a path length change, not an interdiction cost change.

163

Table 48. Comparison of results for s-D cuts with and without providing initial solution

Structure Case
No initial solution Cut Inbound Arcs Solutions 2-Tail

Solved Mean Time StDev # Solved Mean Time StDev # 6= Mean Change p-value

ER

1 100 / 100 33.384 77.795 100 / 100 33.370 77.072 0 - 0.977
2 100 / 100 32.805 57.969 100 / 100 31.537 56.182 0 - 0.043
3 100 / 100 138.151 157.620 100 / 100 150.416 172.588 0 - 0.033
4 100 / 100 150.000 105.719 100 / 100 156.355 108.856 0 - 0.034

BA

5 100 / 100 5.818 50.742 100 / 100 6.479 56.932 0 - 0.291
6 100 / 100 10.990 43.682 100 / 100 11.728 48.044 0 - 0.148
7 100 / 100 4.185 16.401 100 / 100 3.640 12.924 0 - 0.464
8 99 / 100 31.821 107.335 99 / 100 33.571 125.797 0 - 0.607

WS

9 100 / 100 2.936 15.397 100 / 100 3.037 16.974 0 - 0.546
10 100 / 100 3.987 11.121 100 / 100 4.175 12.268 0 - 0.388
11 100 / 100 176.194 279.721 100 / 100 178.632 275.665 0 - 0.564
12 100 / 100 83.765 72.631 100 / 100 81.256 63.365 0 - 0.440

PNDCG

13 89 / 100 37.837 190.769 89 / 100 43.064 221.989 0 - 0.488
14 91 / 100 1.108 4.079 91 / 100 1.300 5.492 0 - 0.437
15 98 / 100 1.074 1.804 98 / 100 1.090 1.896 0 - 0.834
16 99 / 100 1.818 10.804 99 / 100 1.604 9.129 0 - 0.282
17 100 / 100 35.296 33.044 100 / 100 35.676 33.791 0 - 0.683
18 100 / 100 46.639 109.968 100 / 100 48.368 112.648 0 - 0.087

Grid
19 100 / 100 2.058 4.398 100 / 100 2.048 4.200 0 - 0.895
20 100 / 100 0.043 0.015 100 / 100 0.027 0.009 0 - < 0.001
21 94 / 100 10.023 23.107 94 / 100 9.174 15.428 0 - 0.439

Star
22 100 / 100 38.584 150.159 100 / 100 38.660 153.248 0 - 0.909
23 100 / 100 0.645 4.805 100 / 100 0.600 4.506 0 - 0.134
24 79 / 100 155.238 503.811 78 / 100 148.610 491.684 0 - 0.943

164

Table 49. Comparison of results for D-t cuts with and without providing initial solution

Structure Case
No initial solution Cut Outbound Arcs Solutions 2-Tail

Solved Mean Time StDev # Solved Mean Time StDev # 6= Mean Change p-value

ER

1 100 / 100 17.172 18.839 100 / 100 16.519 18.087 0 - 0.115
2 100 / 100 40.825 51.815 100 / 100 37.502 46.915 0 - 0.071
3 100 / 100 166.135 172.571 100 / 100 179.745 194.659 0 - 0.025
4 100 / 100 284.425 241.893 100 / 100 270.274 224.040 0 - 0.086

BA

5 99 / 100 35.336 206.807 100 / 100 64.163 356.172 0 - 0.719
6 96 / 100 78.856 194.284 97 / 100 114.066 381.318 0 - 0.476
7 100 / 100 4.491 18.275 100 / 100 4.873 18.559 0 - 0.597
8 98 / 100 108.621 346.368 97 / 100 80.622 157.335 0 - 0.392

WS

9 100 / 100 0.891 1.192 100 / 100 0.907 1.312 0 - 0.738
10 100 / 100 7.519 16.288 100 / 100 6.573 13.562 0 - 0.061
11 100 / 100 182.233 259.743 100 / 100 187.349 262.850 0 - 0.177
12 100 / 100 106.733 89.597 100 / 100 105.328 87.058 0 - 0.582

PNDCG

13 89 / 100 21.190 170.152 89 / 100 26.641 212.422 0 - 0.228
14 91 / 100 0.149 0.396 91 / 100 0.172 0.603 0 - 0.467
15 98 / 100 3.020 10.844 98 / 100 3.127 12.239 0 - 0.570
16 99 / 100 0.840 1.873 99 / 100 0.894 2.141 0 - 0.347
17 100 / 100 28.965 22.885 100 / 100 28.222 21.708 0 - 0.275
18 100 / 100 50.390 120.592 100 / 100 51.119 125.417 0 - 0.827

Grid
19 100 / 100 2.722 5.295 100 / 100 2.616 5.143 0 - 0.380
20 100 / 100 0.032 0.013 100 / 100 0.031 0.014 0 - 0.854
21 94 / 100 5.867 10.676 94 / 100 6.140 13.226 0 - 0.496

Star
22 94 / 100 196.849 526.998 93 / 100 160.325 413.676 0 - 0.275
23 100 / 100 16.689 106.388 100 / 100 17.079 112.068 0 - 0.516
24 79 / 100 107.067 252.888 78 / 100 99.156 276.360 0 - 0.899

165

Table 50. Comparison of results for s-D and D-t cuts

Structure Case
s-D Cut D-t Cut Solutions 2-Tail

Solved Mean Time StDev # Solved Mean Time StDev # 6= Mean Change p-value

ER

1 100 / 100 33.384 77.795 100 / 100 17.172 18.839 0 - 0.015
2 100 / 100 32.805 57.969 100 / 100 40.825 51.815 0 - 0.124
3 100 / 100 138.151 157.620 100 / 100 166.135 172.571 0 - 0.002
4 100 / 100 150.00 105.719 100 / 100 284.425 241.893 0 - < 0.001

BA

5 100 / 100 5.818 50.742 100 / 100 35.336 206.807 0 - 0.097
6 100 / 100 10.990 43.682 100 / 100 78.856 194.284 0 - < 0.001
7 100 / 100 4.185 16.401 100 / 100 4.491 18.275 0 - 0.86
8 99 / 100 31.821 107.335 100 / 100 108.621 346.368 0 - 0.011

WS

9 100 / 100 2.936 15.397 100 / 100 0.891 1.192 0 - 0.169
10 100 / 100 3.987 11.121 100 / 100 7.519 16.288 1 0.00013 0.018
11 100 / 100 176.194 279.721 100 / 100 182.233 259.743 0 - 0.386
12 100 / 100 83.765 72.631 100 / 100 106.733 89.597 0 - 0.001

PNDCG

13 89 / 100 37.837 190.769 100 / 100 21.190 170.152 1 0.00001 0.545
14 91 / 100 1.108 4.079 100 / 100 0.149 0.396 0 - 0.028
15 98 / 100 1.074 1.804 100 / 100 3.020 10.844 0 - 0.062
16 99 / 100 1.818 10.804 100 / 100 0.840 1.873 0 - 0.371
17 100 / 100 35.296 33.044 100 / 100 28.965 22.885 0 - 0.023
18 100 / 100 46.639 109.968 100 / 100 50.390 120.592 0 - 0.116

Grid
19 100 / 100 2.058 4.398 100 / 100 2.722 5.295 96 -4.10415 0.248
20 100 / 100 0.043 0.015 100 / 100 0.032 0.013 100 -3.34002 < 0.001
21 94 / 100 10.023 23.107 100 / 100 5.867 10.676 54 -2.12963 0.054

Star
22 100 / 100 38.584 150.159 100 / 100 196.849 526.998 0 - 0.006
23 100 / 100 0.645 4.805 100 / 100 16.689 106.388 0 - 0.131
24 79 / 100 155.238 503.811 100 / 100 107.067 252.888 2 0.00002 0.305

166

5.3 Shortest Path Diverting

As with the maximum flow NDP model, the shortest path formulation is partitioned into

the leader’s problem and the follower’s problem. The leader’s problem is as described in the

MNDP-a model. The follower’s problem can be formulated using the typical shortest path

model [6:p. 607]. The follower’s decision variable xij indicates whether arc (i, j) is along the

shortest source-terminus path.

The follower’s objective is combined with the leader’s by adding it, thus preserving its

minimization:

∑
(i,j)∈A

cijyij + λ
∑

(i,j)∈A

dijxij

(leader) (follower)

The magnitude of the weight of the follower’s objective λ is a cooperation factor small enough

to ensure leader preference, as in the MNDP-a model.

167

Following is the formulation for the shortest path network diverting problem for arcs only

(SNDP-a):

min
∑

(i,j)∈E

cijyij + λ
∑

(i,j)∈E

dijxij (5.2a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (5.2b)

us = 0, (5.2c)

uk = 1, ∀k ∈ D ⊂ V, (5.2d)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, (5.2e)

xij ≤ 1− yij, ∀(i, j) ∈ E, (5.2f)

xij ∈ {0, 1}, ∀(i, j) ∈ E, (5.2g)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (5.2h)

ui ∈ {0, 1}, ∀i ∈ V. (5.2i)

The objective (5.2a) ensures that the leader’s minimum cost s-D cut set is selected while

minimizing the shortest source-to-terminus path on the residual network. The cost to in-

terdict arc (i, j) and the distance from node i to node j are represented by cij and dij,

respectively.

The leader’s (attacker’s) problem consists of the first term of the objective function and

constraints (5.2b)-(5.2d) and (5.2h)-(5.2i) and are as described for the MNDP-a model.

The follower’s problem is the shortest path problem and consists of the last term in the

objective function and constraints (5.2e)-(5.2g). Constraints (5.2e) ensure flow conservation

at each node, a single unit of flow originating from the source, and a single unit of flow

168

terminating at the destination. Constraint (5.2f) ensures the arc is not on the shortest path

if the leader interdicts the arc. Notice that there is not a feasible solution for the leader that

interdicts all paths from the source to the terminus due to constraints (5.2e).

Because the leader’s problem is unchanged from the MNDP-a model, the worst-case

bound for the interdiction cost is the sum of the interdiction costs of all arcs entering (or

leaving) the divert set.

5.3.1 Numerical Examples.

Numerical examples illustrate the SNDP-a model. Consider again the directed network

depicted in Figure 19 where each arc has a unit interdiction cost and distance, and with

shaded divert set D = {2, 4, 6}. The optimal solution of the SNDP-a model is the leader’s

minimum cut of 2 (arcs {(1,2), (3,4)}) with a follower’s shortest path of 4 (i.e., 1 → 3 →

5→ 7→ 8).

Next, consider the United States Interstate System. A map [60] of the major US in-

terstates was used to place nodes at the interstate intersections and the arc distances were

estimated using Google maps. The resulting network consists of 143 nodes with 251 undi-

rected arcs (502 directed) and is depicted in Figure 21. Consider a shipping company that

seeks to transport goods from San Diego (node 8) to Miami (node 117). The shortest path

route traverses through the southern most nodes to Jacksonville (node 114) and then pro-

ceeds south to Miami as indicated by the highlighted route in Figure 21. Suppose that a

natural disaster, such as Hurricane Katrina in 2005, has caused damage and traffic conges-

tion in the shaded region covering the southern United States. The shipping company would

then desire a shortest path that diverts from the damaged and congested roads. The SNDP-a

model solves this problem utilizing a divert set consisting of nodes {41, 48, 49, 50, 64, 65,

66, 67, 68, 69, 75, 76, 77}. The solution is for the company to direct drivers to avoid travel

along the arcs indicated with an X and follow the route highlighted in Figure 22. The new

169

shortest path is 3,050 miles whereas the pre-diverting path was 2,686 miles. The shortest

path increased by nearly 400 miles, but satisfies the decision criteria.

5.3.2 Testing and Results.

The SNDP-a model is tested on the same test network instances that were utilized to test

the MNDP-a model. Table 47 lists the parameters utilized to generate the 10 replicates for

each of the 24 network structures listed. Recall that 10 unique divert sets were constructed

for each replicate.

Table 51 lists the results of the model that utilizes s-D cuts and a value of either

λ = 0.00001 or λ = 0. For each of the solution approaches, the number of instances

solved to optimality, mean solution time, and solution time standard deviation are recorded.

In addition, the number of network instances that resulted in unequal solution values is

tabulated. The average difference, if one exists, is also included. Finally, for the network

instances tested, the two-tailed paired-t statistic is utilized to determine whether there is a

difference in the solution times when λ = 0.00001 or λ = 0.

The reason that the number of network instances solved to optimality is not 100/100

for every test is that the divert set was constructed by selecting a random set of connected

nodes. In some structures tested, the divert sets were large enough to be a cut set. In other

words, when no node in the divert set is traversed, no s-t path exists.

A two-tailed paired-t test statistic is utilized to determine whether there is a difference

in the solution times when λ = 0.00001 or λ = 0. In cases when the p-value is less than 0.05,

there is sufficient evidence at the 0.05 level of significance to reject the claim that there is

no difference in the solution times. For larger p-values, there is insufficient evidence at the

0.05 level of significance to reject the claim of no difference in the solution times.

Examination of the p-values comparing λ = 0.00001 and λ = 0 for mean solution times are

larger than 0.05 for all network cases tested except the cases 4, 6, and 17. Within these tests

170

Figure 21. Shortest path from San Diego to Miami and effects of Hurricane Katrina

Figure 22. US Interstate System example diverting due to Hurricane Katrina

171

cases, two favor the λ = 0.00001 solution and the other favors λ = 0. There is insufficient

evidence at the 0.05 level of significance to reject the claim of no difference in the solution

times for the network instances tested. Therefore, the decision to use either value remains

arbitrary. The follower’s term could be removed from the objective without impacting the

solution times for the network instances tested. This did not result in a change in the arc

cut set solutions because the constraints ensure the existence of a follower’s shortest path

after paths to the divert set have been diverted.

In network cases 13 and 14, the SNDP-a model was infeasible for nine of the ten networks

tested. Recall that each of ten network topologies were tested with ten different divert set

instances. In the one network that resulted in optimal solutions for shortest path diverting,

the network had a mean degree of 3.4. The nine test networks that yielded infeasible solutions

each had mean degrees of less than 3. This indicates that the networks tested were sparse

and may indicate a possible threshold at which network diverting is feasible. Further testing

with very sparse networks with various mean degree values may address this shortcoming.

Smaller mean degree values indicate that the network topology may be a tree. A tree

topology is disconnected by the removal of a single node, which further informs the findings

in the networks tested.

172

Table 51. Comparison of results for s-D cuts with λ = 0.00001 and λ = 0

Structure Case
λ = 0.00001 λ = 0 Solutions 2-Tail

Solved Mean Time StDev # Solved Mean Time StDev # 6= Mean Change p-value

ER

1 100 / 100 7.722 15.555 100 / 100 8.034 17.320 0 - 0.568
2 100 / 100 15.289 24.543 100 / 100 14.309 23.921 0 - 0.149
3 100 / 100 88.540 104.958 100 / 100 88.780 103.721 0 - 0.947
4 100 / 100 97.604 85.574 100 / 100 111.338 86.354 0 - 0.026

BA

5 100 / 100 1.875 15.573 100 / 100 1.696 13.226 0 - 0.475
6 100 / 100 2.670 9.599 100 / 100 3.139 11.666 0 - 0.050
7 100 / 100 1.070 3.417 100 / 100 1.454 4.700 0 - 0.151
8 100 / 100 37.254 259.286 100 / 100 45.118 337.923 0 - 0.326

WS

9 100 / 100 1.644 8.841 100 / 100 1.349 6.329 0 - 0.257
10 100 / 100 1.936 4.378 100 / 100 1.871 4.291 0 - 0.467
11 100 / 100 78.268 107.247 100 / 100 80.515 115.413 0 - 0.589
12 100 / 100 40.945 34.527 100 / 100 42.950 37.614 0 - 0.523

PNDCG

13 10 / 100 0.034 0.048 10 / 100 0.028 0.035 0 - 0.275
14 8 / 100 0.203 0.267 8 / 100 0.072 0.045 0 - 0.150
15 70 / 100 0.607 1.028 70 / 100 0.542 0.961 0 - 0.109
16 78 / 100 1.056 5.153 78 / 100 0.982 4.539 0 - 0.474
17 100 / 100 10.982 10.517 100 / 100 9.476 7.985 0 - 0.021
18 100 / 100 15.918 35.479 100 / 100 16.433 36.781 0 - 0.507

Grid
19 100 / 100 0.700 1.702 100 / 100 0.702 1.459 0 - 0.970
20 100 / 100 0.029 0.014 100 / 100 0.030 0.012 0 - 0.565
21 94 / 100 3.922 7.518 94 / 100 3.548 6.218 0 - 0.047

Star
22 100 / 100 18.527 78.282 100 / 100 16.949 57.679 0 - 0.510
23 100 / 100 0.250 1.596 100 / 100 0.243 1.528 0 - 0.421
24 79 / 100 81.898 245.506 79 / 100 83.075 234.712 0 - 0.821

173

5.4 Model Extensions

5.4.1 Extending the Divert Set.

The formulation of the leader’s problem in the MNDP-a (5.1) and SNDP-a (5.2) models

assumes that the divert set D consists only of nodes and that they will not be interdicted

in the problem’s solution. However, the scenario or instance of the problem being modeled

may be more suited to a divert set consisting of arcs only. It is also possible that a divert

set be allowed to contain both nodes and arcs.

In the case that the divert set should contain arcs only, the arc in the divert set could be

transformed into a node. To transform the arc, it is replaced by two arcs and a node as in the

transformation shown in Figure 23. The capacity of arc (i, j) is assigned to both new arcs

and their interdiction cost is large enough that they will not be interdicted. They cannot

be targeted since the leader interdicts arcs by assumption and the two new arcs should not

be targeted since they are part of the divert set. This arc splitting procedure allows node

i to be interdicted if nodal interdiction is permitted and does not unnecessarily restrict the

divert set to nodes that should not be included if the tail or head nodes of the arc were

added as a proxy for the arc in the divert set.

If the divert set is allowed to contain both nodes and arcs, the arc splitting procedure

should be used for arcs in the divert set unless the node at the head or tail of the arc is

also in the divert set. Then the split is redundant since flow on the arc will be interdicted

because solution to the NDP will permit no flow into the divert set. This transformation

will convert any arcs to nodes without unnecessarily restricting the flow on nodes and arcs

adjacent to the divert set. The increase in the number of decision variables will depend on

Figure 23. Arc (i, j) is split and proxy node i′ takes its place

174

the number of arcs converted to nodes. If the number of arcs in the divert set is small, the

resulting increase in the number of variables will be minimal. However, the problem size can

become too large with the addition of many arcs to the divert set.

5.4.2 Model Extensions for NDP.

The network diverting problem can be extended to account for several modifications.

Without loss of generality, the maximum flow or shortest path network diverting formulation

will be used to illustrate the changes. Each of the modifications are implemented individually,

unless noted otherwise. Multiple changes can be incorporated in a single model if necessary

by making each of the appropriate modifications.

The first extension is to allow more than one disjoint divert set. Let L be the index for

each disjoint divert set. Thus, the set of divert nodes is D =
⋃
`∈L

D`. The formulation will

then ensure that no flow is permitted to all divert sets for the leader’s problem and will

determine either the maximum flow remaining or the shortest path for the follower. The

leader’s decision variable is indexed for the multiple divert sets and becomes y`ij. It indicates

whether the flow from the source to the `th divert set is interdicted along arc (i, j). The

indicator variable for which side of the cut is also indexed by `. The formulation for the

shortest path network diverting problem for arcs only with multiple divert sets (SNDP-aM)

175

follows:

min
∑
`∈L

∑
(i,j)∈E

(cijy
`
ij) + λ

∑
(i,j)∈E

(dijxij) (5.3a)

s.t. ui − uj + y`ij ≥ 0, ∀(i, j) ∈ E,∀` ∈ L, (5.3b)

u`s = 0, ∀` ∈ L, (5.3c)

u`k = 1, ∀k ∈ D` ⊂ V, ∀` ∈ L, (5.3d)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, (5.3e)

xij ≤ 1− y`ij, ∀(i, j) ∈ E,∀` ∈ L, (5.3f)

xij ∈ {0, 1}, ∀(i, j) ∈ E, (5.3g)

y`ij ∈ {0, 1}, ∀(i, j) ∈ E,∀` ∈ L, (5.3h)

u`i ∈ {0, 1}, ∀i ∈ V, ∀` ∈ L. (5.3i)

In this model, all constraints are as described for the SNDP-a model. The index set for each

of the divert sets is included in the objective (5.3a) and Constraints (5.3b)-(5.3d), (5.3f),

and (5.3h)-(5.3i). The addition of multiple divert sets does not alter the follower problem

or the linking Constraint (5.3f) since the flow on the shortest path will not be allowed if the

arc is interdicted for any of the possible source to divert set cuts.

Next, nodes are allowed to be interdicted to divert flow from the divert set. For node

interdiction, a decision variable vi is introduced where vi = 1 if node i is interdicted and

vi = 0 otherwise, similar to the nodal interdiction of Kennedy et al. [45]. This leads to a

176

formulation for the maximum flow network diverting problem for nodes only (MNDP-n):

min
∑
i∈V

(civi)− λxts (5.4a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (5.4b)

us = 0, (5.4c)

uk = 1, ∀k ∈ D ⊂ V, (5.4d)

yij = vi, ∀(i, j) ∈ E, (5.4e)

v` = 0, ` = s, ` = t, (5.4f)∑
j:(i,j)∈E′

xij −
∑

j:(j,i)∈E′
xji = 0, ∀i ∈ V, (5.4g)

xij ≤ bij(1− yij), ∀(i, j) ∈ E, (5.4h)

xij ≥ 0, ∀(i, j) ∈ E, (5.4i)

xts ≥ 1, (5.4j)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (5.4k)

v` ∈ {0, 1}, ∀` ∈ V, (5.4l)

ui ∈ {0, 1}, ∀i ∈ V. (5.4m)

In this model, all constraints are as described for the MNDP-a model. The objective accu-

mulates the cost to the leader of interdicting nodes (ci represents the cost to interdict node

i) while maximizing flow for the follower. The addition of Constraint (5.4e) enforces the cut

of outgoing arcs from the interdicted node. Constraint (5.4f) ensures that the source and

terminus are not interdicted. For D-t cuts, the formulation is changed slightly to account for

not interdicting nodes in the divert set, i.e. Constraint (5.4e) becomes yij = vj,∀(i, j) ∈ E.

To modify the MNDP-n to allow both node and arc interdiction, the only change is to

a single constraint. Constraint (5.4e) becomes yij ≤ vi, ∀(i, j) ∈ A. This allows for either

177

arc or node interdiction. As before, the constraint is modified for D-t interdiction to be

yij ≤ vj,∀(i, j) ∈ A. Therefore, it is necessary to ‘refund’ the arc interdiction cost as a result

of targeting a node [45]. Thus, the maximum flow formulation of the network diverting

problem for both arcs and nodes (MNDP-b) is:

min

 ∑
(i,j)∈E

(cij(yij − vi)) +
∑
i∈V

civi

− λxts (5.5a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (5.5b)

us = 0, (5.5c)

uk = 1, ∀k ∈ D ⊂ V, (5.5d)

yij ≥ vi, ∀(i, j) ∈ E, (5.5e)

v` = 0, ` = s, ` = t, (5.5f)∑
j:(i,j)∈E′

xij −
∑

j:(j,i)∈E′
xji = 0, ∀i ∈ V, (5.5g)

xij ≤ bij(1− yij), ∀(i, j) ∈ E, (5.5h)

xij ≥ 0, ∀(i, j) ∈ E, (5.5i)

xts ≥ 1, (5.5j)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (5.5k)

vi ∈ {0, 1}, ∀i ∈ V, (5.5l)

ui ∈ {0, 1}, ∀i ∈ V. (5.5m)

The leader may be successful in diverting if the path or flow through the divert set is

lower than a certain threshold. This may be the case when the leader determines that the

follower will not be able to overcome the leader in the future due to the diminished path

or flow. This situation can be incorporated in the diverting models by setting a value in a

constraint that limits flow or path in the divert set. The formulation for the shortest path

178

network diverting problem for arcs only with a divert set threshold (SNDP-aT) follows:

min
∑

(i,j)∈E

cijyij + λ
∑

(i,j)∈E

dijxij (5.6a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (5.6b)

us = 0, ∀i ∈ V, (5.6c)

uk = 1, ∀k ∈ D ⊂ V, (5.6d)

∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, (5.6e)

xij ≤ 1− yij, ∀(i, j) ∈ E, (5.6f)∑
i and/or j∈D:

(i,j)∈E

dijxij ≤ T, (5.6g)

xij ∈ {0, 1}, ∀(i, j) ∈ E, (5.6h)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (5.6i)

ui ∈ {0, 1}, ∀i ∈ V. (5.6j)

The objective and constraints are as described for the SNDP-a model. Constraint (5.6g)

ensures the total distance the follower can traverse within the divert set is less than the

threshold T .

Each of the model extensions presented in this section can be applied individually or

combined in a single formulation to increase the realism of the model.

The MNDP-a formulation is modified to account for a case where there are not enough

resources to completely halt flow to the divert set. To facilitate this change, a partition of

the cut into those selected and those not actually interdicted but still in the cut set similar

179

to the method Wood [68] is used. The variable zij is added which denotes whether arc (i, j)

is in the s-D cut but not targeted for attack. The amount of interdiction resources required

to cut the flow on an arc is denoted rij and the amount the attacker has available is R. This

gives the network diverting problem for arcs only with resource constraints (MNDP-aR).

min

 ∑
(i,j)∈E

(bijzij)− εw

− λxts (5.7a)

s.t.
∑

(i,j)∈E

rijyij + w = R, ∀(i, j) ∈ E, (5.7b)

ui − uj + zij + yij ≥ 0, ∀(i, j) ∈ E, (5.7c)

us = 0, (5.7d)

uk = 1, ∀k ∈ D ⊂ V, (5.7e)∑
j:(i,j)∈E′

xij −
∑

j:(j,i)∈E′
xji = 0, ∀i ∈ V, (5.7f)

xij ≤ bij(1− yij), ∀(i, j) ∈ E, (5.7g)

xij ≥ 0, ∀(i, j) ∈ E, (5.7h)

xts ≥ 1, (5.7i)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (5.7j)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (5.7k)

ui ∈ {0, 1}, ∀i ∈ V. (5.7l)

In this model, the objective function value is penalized for not selecting a cut that would

potentially allow flow to the divert set. As the amount of interdiction resources diminish,

the model is forced to allow flow to the divert set and the first part of the objective gives a

worst-case flow through the divert set. The follower might not select that specific flow based

on the selection of multiple maximum flow solutions, but flow through D up to a value of

180

∑
(i,j)∈E

(cijzij) is possible. Constraints (5.7b), (5.7c), and (5.7k) ensure the desired partitioning

of the s-D cut into those arcs interdicted and those that are not.

Constraint (5.7b) introduces a slack-like variable w representing the residual resource

(equivalent to unused resource), and a multiple of this residual is included in the objective

function to reward the conservation of resources (similar to Kallemyn et al. [44]). Because

the residual is largest when conserving the resource, an ε-multiple of the residual resource is

added in the minimizing objective. The ε should be small enough that the magnitude of the

actual network flow is not altered, but not so small that the effect of resource conservation

is lost. In effect, the use of this term in the objective acts as a penalty function on the

expenditure of interdiction resources and discriminates among otherwise alternative optimal

solutions, if any exist.

5.5 Summary

This chapter described and developed the network diverting problem. The contributions

are summarized in Table 52. Maximum flow and shortest path network diverting models were

formulated and solved over many test instances. The timing results for the test instances

were analyzed. The largest factor in time to solve the NDP for the network instances tested

is whether the divert set is more restrictive than the unconstrained maximum flow or shortest

path solution. The relationship between diverting and channeling was also examined. The

next chapter considers the impact of disrupting a network.

181

Table 52. Diverting Interdiction Task Contributions

Interdiction
Section Contribution Description

Task
Divert 5.2 MNDP-a The maximum flow network divert-

ing problem for arcs only deter-
mines the leader’s minimum cost
source-to-divert set cut while max-
imizing the remaining source-to-
terminus flow on the network for
the follower.

5.3 SNDP-a The shortest path network divert-
ing problem for arcs only deter-
mines the leader’s minimum cost
source-to-divert set cut to ensure no
path for the follower traverses the
divert set.

5.4 SNDP-aM Extends SNDP-a model.
The model represents diverting
shortest paths from multiple divert
sets.

5.4 MNDP-n Extends MNDP-a model.
The model represents diverting the
follower’s residual flow from the di-
vert set by targeting nodes.

5.4 MNDP-b Extends MNDP-a model.
The model represents diverting the
follower’s residual flow from the di-
vert set by targeting arcs and/or
nodes.

5.4 SNDP-aT Extends SNDP-a model.
The model represents targeting arcs
such that the total distance tra-
versed within the divert set is less
than a threshold.

5.4 MNDP-aR Extends MNDP-a model.
The model represents diverting the
residual flow from the divert set
with limited resources.

182

VI. Disrupt Interdiction Tasks

6.1 Introduction

Figure 24. Research Framework: Network Disrupting Models

This chapter addresses the models approach dealing with the ‘disrupt’ interdiction task

depicted in the research framework depicted in Figure 24. In this research, the term ‘disrupt’

refers to arcs or nodes targeted for interdiction that are not destroyed, but rather disrupted

in some way to alter their capacity. This chapter develops a mathematical programming

modeling framework for disrupting a network’s capabilities based on a fixed probability of

inflicting intended damage against each targeted arc and/or node.

Whenever a physical object is targeted and attacked, there is some probability that the

attack does not completely destroy the target, by design or otherwise. Given the stochastic

nature of this phenomenon, modeling various levels of destruction in the network and the

resulting disruptions will significantly increase the realism of these models. In assessing battle

damage, analysts must make determinations about whether a target sustained damage and,

if so, whether it is still functional. These measurements are based on the analyst’s perception

of what percentage of the network’s capability remains.

183

The level of damage that occurs as a result of an interdiction attack is not known.

Consider two parameters that indicate the impact to an arc when it is targeted. First, let qij

denote the percent increase in the length (time) required to traverse arc (i, j). This parameter

is utilized when the follower’s objective is minimizing the shortest path length between a

source and terminus. Second, let rij represent the percent reduction for the capacity of arc

(i, j). This parameter is bounded between 0 and 1 and is utilized when the follower seeks to

maximize network flow. The interdiction strategy is determined based on the flow or path

across the residual network after interdiction. In this research, when dealing with battle

damage on a flow network, if an attacker desires to use the actual probability of kill pk, its

value is used as the reduction.

Additionally, arcs may be targeted for disruptive attacks that do not involve weaponry.

Within the cyber domain, a disruptive attack may increase the time for a message to traverse

an arc without alerting the network operator that the arc is compromised. Meanwhile, the

attacker may complete their mission before a command message reaches troops or, alterna-

tively, a sensor alert message reaches the decision maker operating the targeted network.

6.2 Disrupting Paths and Flows

In a manner similar to that of Israeli and Wood [42], the arc’s length or capacity is

increased if the arc is targeted. Whereas Israeli and Wood increased the arc’s distance

by an integer value, as described in Section 2.3.1, the proposed disruptive models increase

(decrease) the arc’s length (capacity) by a percentage of the arc’s distance-weight (capacity-

weight).

For the disrupting models developed in this chapter, several decision variables will be

commonly utilized. The binary yij variable indicates whether arc (i, j) is targeted for in-

terdiction disrupting tasks. Typically, the models utilize a cut set to identify the arcs that

take a value of yij = 1 when targeted. The cut set is identified via the variable ui which

184

assigns nodes to respective sets indicated by a 0 or 1 value for the ui-variable. The cut set

denotes the arcs that connect these sets. In some instances, every arc in the cut set may

not be targeted. In such cases, the variable zij indicates whether arc (i, j) is contained in

the cut set but not targeted. Because the models represent the decisions of a leader (who

takes action based on y and z) and a follower, the final variable represents the decision of

the follower: the variable xij indicates the flow across arc (i, j) as determined by the follower

through the residual network. The x-variable does not impact the values of the leader’s

variables, but it is maintained in the models to account explicitly for the follower’s actions.

In flow models where the objective function identifies the minimum capacity cut set, the

follower’s problem can be removed because the objective explicitly computes the follower’s

flow. In flow models having an alternate objective, such as minimizing cost, the follower’s

maximum flow problem is retained.

Let dij represent the length of the arc from node i to node j. The value of dij can also

represent the travel time along the arc or other additive measures that can be minimized.

185

The formulation for the disruptive shortest path problem for arcs only (DSP-a):

min
∑

(i,j)∈E

(cijyij) + λ
∑

(i,j)∈E

xijd
′
ij (6.1a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (6.1b)

us = 0, (6.1c)

ut = 1, (6.1d)

∑
j∈V

xij −
∑
j∈V

xji =

1 if i = s,

−1 if i = t,

0 otherwise,

∀i ∈ V, (6.1e)

d′ij = dij(1 + yijqij), ∀(i, j) ∈ E, (6.1f)

xij ∈ {0, 1}, ∀(i, j) ∈ E (6.1g)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (6.1h)

ui ∈ {0, 1}, ∀i ∈ V. (6.1i)

The objective (6.1a) can be separated into the leader’s and the follower’s objectives. The

leader minimizes interdiction cost. The follower minimizes the shortest path which is deter-

mined by the expected increase in arc distances based on damage incurred as a result of the

interdiction strategy in the last term of (6.1a). If an arc is not interdicted, the value of d′ij is

unchanged from dij when computing the length of the shortest path. If an arc is interdicted,

the distance is increased by q percent. A linking Constraint (i.e., xij ≤ 1− yij,∀(i, j) ∈ E)

is not included since the path can still be selected even if the arc is targeted as part of the

interdiction strategy. In other words, a targeted arc can be used by the network operator,

but it might be degraded. All other constraints are as described for the SNDP-a formulation.

186

Note that the DSP-a model is nonlinear. The follower’s portion of the objective contains

the product of the x- and y-variables when the value of d′ij is substituted from Constraint 6.1f.

Because the DSP-a model is nonlinear (as opposed to all the other models developed through-

out this research, which are linear), it is not tested. Additionally, the DSP-a model can be

solved utilizing the methodology of Israeli and Wood [42] since its form is similar in structure.

Alternatively, a disrupting task may be planned against a maximum flow network. Whereas

the shortest path disrupting model is similar to one found in the open literature, no maximum

flow disrupting model was found. Let bij denote the capacity of arc (i, j). The formulation

for the disruptive maximum flow problem for arcs only (DMP-a):

min
∑

(i,j)∈E

(bij(1− rij)yij)− λxts (6.2a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (6.2b)

us = 0, (6.2c)

ut = 1, (6.2d)∑
j∈V

xij −
∑
j∈V

xji = 0, ∀i ∈ V, (6.2e)

xij ≤ bij(1− yijrij), ∀(i, j) ∈ E, (6.2f)

xij ≥ 0, ∀(i, j) ∈ E, (6.2g)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (6.2h)

ui ∈ {0, 1}, ∀i ∈ V. (6.2i)

Again, the objective (6.2a) is partitioned into two parts: one for the leader and one for

the follower. The leader minimizes residual network capacity. The follower maximizes the

expected flow which is determined by the expected residual capacity of the arcs as a result

of damage incurred during interdiction in Constraint (6.2f). If an arc is not interdicted, the

187

value of xij is bounded above by the capacity bij. If an arc is targeted, the value of xij

is bounded above by the reduced capacity. All other constraints are as described for the

MNDP-a formulation.

The objective for the DMP-a model selects a minimum capacity cut set within the residual

network. Alternatively, the objective function could be

∑
(i,j)∈E

(cijyij)− λxts.

This form of the objective minimizes the cost of targeting arcs and disrupts source-terminus

flow. The two objectives considered yield the minimum capacity and cost impacts from the

leader’s perspective, respectively.

The weights for the objective functions of each of the disruptive models (i.e., (6.1a) and

(6.2a)) correspond to the importance of the follower’s decision. The value of the weight λ

of the follower’s problem should be small enough to ensure that the leader has preemptive

decision preference. To ensure that the leader has preemptive preference over the follower,

the weight for λ can be determined by utilizing Sherali’s Algorithm 1 [58].

6.2.1 Notional Example.

Consider again the notional military transportation network example from Ghare et

al. [33] and Wood [68] as depicted in Figure 25. The capacity, interdiction costs, and ex-

pected percent capacity reduction as a result of being targeted are enumerated in Table 53.

Two separate damage estimates are given to demonstrate the impact of differences in the

capacity reduction as a result of striking arcs.

For the first set of expected reduction levels (within the column labeled (rij)1) using

the minimum capacity cut objective, the solution of DMP-a model yields a cut set of arcs

{(2,9), (2,6), (2,7), (3,6), (3,7), (3,8), (4,7), (4,8), (5,7), (5,8), (5,12)} for a cost of 47 units of

188

Arc Capacity Cost (rij)1 (rij)2 Arc Capacity Cost (rij)1 (rij)2

(1,2) 1000 100 0.00 0.00 (6,10) 60 7 0.25 0.75
(1,3) 1000 100 0.00 0.00 (7,10) 120 4 0.25 0.75
(1,4) 1000 100 0.00 0.00 (7,11) 150 6 0.25 0.75
(1,5) 1000 100 0.00 0.00 (8,11) 120 6 0.25 0.75
(2,6) 60 5 0.50 0.67 (8,12) 80 4 0.25 0.75
(2,9) 70 4 0.25 0.75 (9,13) 80 4 0.33 0.80
(2,7) 60 5 0.50 0.67 (9,14) 50 5 0.33 0.80
(3,6) 50 3 0.50 0.67 (10,13) 100 5 0.33 0.80
(3,7) 50 3 0.50 0.67 (10,14) 80 4 0.33 0.80
(3,8) 60 5 0.50 0.67 (11,14) 180 6 0.33 0.80
(4,7) 100 3 0.50 0.67 (11,15) 100 4 0.33 0.80
(4,8) 80 5 0.50 0.67 (12,14) 80 5 0.33 0.80
(5,7) 50 5 0.50 0.67 (12,15) 100 6 0.33 0.80
(5,8) 100 5 0.50 0.67 (13,16) 1000 100 0.00 0.00
(5,12) 80 4 0.25 0.75 (14,16) 1000 100 0.00 0.00
(6,9) 60 4 0.25 0.75 (15,16) 1000 100 0.00 0.00

Table 53. Data for the notional military transportation network in Figure 25 [33, 68]

Figure 25. A notional military transportation network [33, 68]

189

interdiction resource and allows a maximum flow across the residual network of 417.5 units.

When considering the expected reduction damage levels of (rij)2, the cut set consists of arcs

{(9,13), (9,14), (10,13), (10,14), (11,14), (11,15), (12,14), (12,15)} for a cost of 39 units of

interdiction resource and allows a maximum flow across the residual network of 154 units.

When the objective is modified to compute the minimum cost cut set, the cut set consists

of arcs {(2,9), (2,6), (3,6), (7,10), (8,12), (11,14), (11,15), (5,12)} for a cost of 34 units of

interdiction resource regardless of capacity reduction levels. The residual flow as a result of

disrupting network attacks with damage levels that reduce capacities according to the table

are 504.167 and 180.167 units for reduction levels (rij)1 and (rij)2, respectively.

In these notional example network instances, the two objectives (i.e., minimize cost and

minimize capacity cut) yield solutions that demonstrate to the decision maker the trade-off

between interdiction cost and residual flow.

6.2.2 Testing and Results.

The DMP-a model is tested on network instances that are generated as described in

Appendix A. The parameters for each network structure utilized are given in Table 54. For

each of the 24 network structure cases listed, 30 replicates were generated.

The values of the interdiction cost-weight and the capacity-weight assigned to each arc

in the network are selected using a discrete (integer) uniform distribution having a range

between 1 and 10, inclusively. The reduction in capacity achieved by targeting an arc is

determined via a uniform distribution assigning rij to one of three values: 0.25, 0.50, or 0.75.

The DMP-a model is solved for the various random network instances using IBMr

ILOGr CPLEXr Optimization Studio V12.6. The solutions when the DMP-a model is

solved are displayed in Table 55.

190

Table 54. Parameter settings for 100-node random network structures

Structure Parameters Case Mean Density

ER

β = 0, p = 0.1 1 0.098
β = 1, p = 0.1 2 0.099
β = 0, p = 0.5 3 0.500
β = 1, p = 0.5 4 0.502

BA

ma = 2, n0 = 25 5 0.091
ma = 5, n0 = 25 6 0.136
ma = 2, n0 = 55 7 0.318
ma = 10, n0 = 50 8 0.348

WS

k = 4, p = 0.10 9 0.040
k = 4, p = 0.25 10 0.040
k = 30, p = 0.10 11 0.303
k = 30, p = 0.25 12 0.303

PNDCG

β = 0, α = 2.35 13 0.025
β = 1, α = 2.35 14 0.025
β = 0, dist = U3,5 15 0.030
β = 1, dist = U3,5 16 0.030
β = 0, dist = U20,5 17 0.202
β = 1, dist = U20,5 18 0.202

Grid
10× 10 19 0.037
5× 20 20 0.038
20× 5 21 0.035

Star
10× 10 22 0.040
5× 20 23 0.040
20× 5 24 0.040

The number solved shows the number of network instances that resulted in an optimal

solution within the 3,600 second time limit imposed on the solver. Every network instance

tested yielded an optimal solution.

Network density is graphed against solution times in Figure 26 for the network instances

tested. The line represents a linear approximation of the relationship between density and

solution time. For the networks tested, solution time increases with an associated increase

in network density. The coefficient of determination R2 between density and solution time,

given in parentheses in the legend of the chart for the tested network cases, is 0.887. The

191

Table 55. Results for DMP-a for 100-node network instances

Structure Type # Solved Mean Time StDev Time Mean Its StDev Its

ER

1 30 / 30 0.063 0.006 284.3 57.508
2 30 / 30 0.063 0.006 298.3 71.723
3 30 / 30 0.385 0.161 577.6 65.225
4 30 / 30 0.355 0.019 596.3 57.262

BA

5 30 / 30 0.053 0.008 39.8 24.814
6 30 / 30 0.078 0.005 120.5 44.573
7 30 / 30 0.186 0.005 96.5 61.612
8 30 / 30 0.215 0.017 228.5 33.823

WS

9 30 / 30 0.030 0.006 220.3 44.852
10 30 / 30 0.031 0.005 209.3 38.909
11 30 / 30 0.211 0.008 559.2 59.465
12 30 / 30 0.209 0.009 495.6 35.764

PNDCG

13 30 / 30 0.015 0.008 71.1 37.016
14 30 / 30 0.019 0.006 74.9 35.740
15 30 / 30 0.023 0.008 121.2 51.401
16 30 / 30 0.023 0.008 132.8 41.752
17 30 / 30 0.130 0.009 396.7 32.747
18 30 / 30 0.130 0.012 401.3 36.535

Grid
19 30 / 30 0.036 0.007 389.6 61.522
20 30 / 30 0.036 0.007 416.1 50.683
21 30 / 30 0.034 0.027 299.3 31.378

Star
22 30 / 30 0.031 0.004 265.2 47.967
23 30 / 30 0.027 0.007 161.0 27.261
24 30 / 30 0.037 0.020 318.4 37.467

large value of R2 suggests that there exists a strong linear relationship between density and

solution time when taking into account the variance over the 30 replicates of each case.

The number of iterations did not exhibit as strong a linear relationship (R2 = 0.348) with

network density for the networks instances tested.

6.3 Flow Model Extensions

Extensions to the baseline disrupting maximum flow model (i.e., DMP-a) are proposed.

The disrupting flow model is extended to consider limited resources, targeting utilizing mul-

192

Figure 26. Density vs solution time for 100-node network instances tested

tiple strikes against a target, considering mission success at or above a threshold, and models

to assist in visualizing the trade-offs between cost and residual flow. The model extensions

are presented individually; however, the changes to transform a model from the baseline

DMP-a model can be combined to formulate a more adaptable representation of the actual

network disrupting scenario.

6.3.1 Disrupting with Limited Resources.

The DMP-a model is modified to account for a case where there are insufficient resources

to target every arc contained in the cut set. To facilitate this change, the cut set is partitioned

into those arcs selected and those not actually interdicted but still in the cut set similar to

the method of Wood [68]. The variable zij is added to denote whether an arc (i, j) is in the

s-t cut but not targeted. The interdiction resource cost required to disrupt the flow on an

arc is denoted cij, and the total resource amount the attacker has available is R.

193

Since the leader’s objective computes the minimum residual capacity cut, the follower’s

decision via the x-variable is not included. The network disrupting maximum flow problem

for arcs only with resource constraints (DMP-aR) follows:

min
∑

(i,j)∈E

yijbij(1− rij) +
∑

(i,j)∈E

(bijzij)− εw (6.3a)

s.t.
∑

(i,j)∈E

cijyij + w = R, (6.3b)

ui − uj + zij + yij ≥ 0, ∀(i, j) ∈ E, (6.3c)

us = 0, (6.3d)

ut = 1, (6.3e)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (6.3f)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (6.3g)

ui ∈ {0, 1}, ∀i ∈ V. (6.3h)

In this model, the objective function minimizes the total flow through the cut set via the

first two terms in the objective. As the amount of interdiction resources diminish, the model

is forced to allow flow across the cut set, and the first part of the objective determines this

quantity. Constraints (6.3b), (6.3c), and (6.3g) ensure the desired partitioning of the s-t cut

into those arcs interdicted and those that are not.

Constraint (6.3b) introduces a variable w representing the residual resource (equivalent

to unused resource), and a multiple of this residual is included in the objective function to

reward the conservation of resources (similar to Kallemyn et al. [44]). Because the residual is

largest when conserving the resource, an ε multiple of the residual is added in the objective

function. The ε should be small enough that the magnitude of the actual network flow is

not altered, but not so small that the impact of resource conservation is lost. In effect, the

194

use of this term in the objective acts as a penalty function on the expenditure of interdiction

resources and discriminates between any alternate optimal solutions with respect to the other

objective function components.

The notional military transportation network described in Figure 25 and Table 53 is

solved utilizing the DMP-aR model. Consider a resource availability of R = 15 units. The

solution is to disrupt arcs (2,6), (3,6), (3,7), and (4,7) for a cost of 14 units of interdiction

resource and allows a maximum flow across the residual network of 590 units when utilizing

the capacity reductions indicated with (rij)1. When utilizing capacity reductions for (rij)2,

the DMP-aR solution has a cost of 14 units, and the target set consists of arcs (7,10), (11,14),

and (11,15). The maximum flow across the residual network is 426 units.

Thus, the decision maker is presented with a solution to disrupt the maximum flow on the

residual network without exceeding the given resource limitation. The objective function is

selected to provide the decision maker with the most disruptive target set while still staying

within the resource budget.

6.3.2 Targeting for Multiple Strikes.

The destroy models in Chapter IV did not require a consideration for striking a targeted

arc more than once since the models assume that an arc is completely destroyed upon

attack. The disrupting models, however, relax this assumption and can consider multiple

strikes against targeted arcs.

To account for multiple strikes against an arc within a maximum flow network, the DMP-

aR model is modified. Notice that the baseline model partitions the cut set into those arcs

that are targeted for a single strike and those that are not targeted at all. The partitioning

of the cut set in the resource constrained model allows the allocation of multiple strikes while

not targeting some arcs in the cut set whose capacity will remain unchanged.

195

The maximum number of strikes allowed for any targeted arc is denoted by `. Thus, the

decision variable yij takes an additional index that represents the number of strikes that are

to be executed on arc (i, j). The index k can take integer values between 0 and `, inclusively.

The decision variable that indicates whether arc (i, j) is targeted for disruption is yijk where

k represents the number of strikes against the arc. Notice that the variable zij is equivalent

to yij0. Therefore, the variable y is used in lieu of z in the multiple strike model. The

amount of resources consumed is computed by modifying Constraint (6.3b) to account for

the additional allocation of resources for multiple strikes as

∑̀
k=1

∑
(i,j)∈E

kcijyijk + w = R.

The sum across the arcs targeted for multiple strikes have the respective amount of resource

cost allocated via the multiplication by k.

Additionally, the model must account for the impact of reducing the arc’s capacity by

targeting an arc more than once. Thus, the objective term for minimizing the flow through

the cut set becomes ∑̀
k=0

∑
(i,j)∈E

yijkbij(1− rij)k.

This forces the model to account for the disruption of arcs due to multiple strikes against

a single arc. The reduction in capability is raised to the power of the number of strikes.

However, because the quantity k is a parameter and not a decision variable, the model

remains linear. To ensure that an arc is selected to be targeted, regardless of the number of

strikes, the sum of the y-variables across all strike possibilities is set less than or equal to 1,

i.e., ∑̀
k=0

yijk ≤ 1, ∀(i, j) ∈ E.

196

The follower’s residual maximum flow problem is not included because the minimum residual

capacity cut is utilized.

These changes allow the formulation of the network disrupting problem for arcs only with

multiple strikes (DMP-aM):

min
∑̀
k=0

∑
(i,j)∈E

yijkbij(1− rij)k − εw (6.4a)

s.t.
∑̀
k=0

∑
(i,j)∈E

kcijyijk + w = R, (6.4b)

ui − uj +
∑̀
k=0

yijk ≥ 0, ∀(i, j) ∈ E, (6.4c)

us = 0, (6.4d)

ut = 1, (6.4e)∑̀
k=0

yijk ≤ 1, ∀(i, j) ∈ E, (6.4f)

yijk ∈ {0, 1}, ∀(i, j) ∈ E, k = 0, . . . , ` (6.4g)

ui ∈ {0, 1}, ∀i ∈ V. (6.4h)

The notional military transportation network depicted in Figure 25 and Table 53 is

utilized to demonstrate the DMP-aM model. The notional example is solved for the (rij)1

capacity reduction values with R = 50 and ` = 3. The resulting disrupting solution contains

arcs {(2,9), (5,9)} not targeted, arcs (2,6), (2,7), (3,6), (3,8), (4,8), (5,7)} targeted once

each, and arcs {(3,7), (4,7), (5,8)} targeted for two strikes each for a total cost of 50 units

and a residual flow of 392.5 units. When the interdiction budget is increased to R = 100,

all available resources are consumed (i.e., cost is 100 units) and residual flow decreases to

215.78 units by targeting arc (5,7) once, arcs {(2,6), (2,7), (3,6), (3,7), (3,8), (4,8), (5,8)}

twice each, and striking arcs {(2,9), (4,7), (5,12)} three times each.

197

The example is also solved for the reductions in (rij)2 with R = 50 and ` = 3. The

DMP-aM model yields a solution that costs 50 units and allows 98.20 units of flow through

the residual network. The cut set contains arcs {(5,12), (9,13), (9,14), (10,13), (10,14)},

selected to be targeted once each, and arcs {(8,12), (11,14), (11,15)} to be targeted twice

each. When the resource allocation is increased to R = 100, the resulting solution targets

arcs {(9,13), (9,14)} twice each and arcs {(5,12), (8,12), (10,13), (10,14), (11,14), (11,15)}

three times each for a total cost of 99 unit and a residual flow of 11.38 units.

The decision maker is presented with a target allocation that maximally disrupts the

residual network. A list of arcs that should be targeted and the number of strikes against

each is presented. The expected damage is computed for the disruption based on the number

of strikes planned against each arc.

6.3.3 Mission Success by Threshold.

For the disrupting flow model (i.e., DMP-a), there may be a damage level as a result of an

interdiction strategy that is large enough to consider the mission a success. This value could

be considered a damage threshold value that, if known, would allow more flexible targeting

options.

Utilizing the partition of the cut set into arcs targeted and not as in the limited resource

model will allow the leader to save interdiction resource costs and ensure mission success by

limiting flow to at most the threshold level. Let F denote the flow threshold for which the

leader will consider the interdiction mission a success. The sum of the flow that traverses

the cut set is utilized to ensure the flow does not exceed the threshold:

∑
(i,j)∈E

bij(1− rij)yij +
∑

(i,j)∈E

bijzij ≤ F.

198

The follower’s residual maximum flow is not computed in the model so it is retained in

the objective and constraints via the x-variable. The network disrupting maximum flow

threshold problem for arcs only (DMP-aT).

min
∑

(i,j)∈E

(cijyij)− λxts (6.5a)

s.t. ui − uj + zij + yij ≥ 0, ∀(i, j) ∈ E, (6.5b)

us = 0, (6.5c)

ut = 1, (6.5d)∑
j:(i,j)∈E

xij −
∑

j:(j,i)∈E

xji = 0, ∀i ∈ V, (6.5e)

xij ≤ bij(1− yijrij), ∀(i, j) ∈ E, (6.5f)

xij ≥ 0, ∀(i, j) ∈ E, (6.5g)∑
(i,j)∈E

bij(1− rij)yij +
∑

(i,j)∈E

bijzij ≤ F, (6.5h)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (6.5i)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (6.5j)

ui ∈ {0, 1}, ∀i ∈ V. (6.5k)

The objective ensures that the leader selects a minimum cut set and that the follower max-

imizes flow on the residual network. Constraint (6.5h) ensures that the leader selects those

arcs for interdiction such that the residual flow is at or below the threshold. The remaining

constraints are as described for previous models.

Consider the notional military transportation example in Figure 25 with the capacity,

cost and reduction levels (rij)1 from Table 53. If the flow threshold for mission success is

F = 680, the solution for the DMP-aT model is to target arc (4,7) at a cost of 3 units with

199

a residual flow of 670 units. Alternatively, if the flow threshold is F = 500, the solution of

DMP-aT model yields a target set of arcs {(2,9), (2,6), (2,7), (3,6), (3,7), (4,7), (5,7), (8,12)}

for a cost of 32 units of interdiction resource and allows a maximum flow across the residual

network of 497.5 units.

Thus, the decision maker receives a target solution that results in the residual maximum

flow on the network below the desired threshold. The cost to disrupt the network is mini-

mized. As the threshold becomes more aggressive (i.e., the desired residual flow decreases),

the number of arcs that should be targeted increases until the threshold value is satisfied.

6.3.4 Pareto Solutions.

The optimal solutions to the DMP-aR model are sensitive to changes in R. Decision

makers that allocate resources to disrupting arcs in a network will be interested in trade-offs

between arc interdiction costs and residual flow through the network. The Pareto solutions

for the interdiction modeling may be found via an approach similar to the ε-constraint

method of Ehrgott [24:pp. 98–101] or via an alternative explored by Royset and Wood [57].

For the disrupting problem, the DMP-aR model is extended to include features of the DTMP-

a model to find solutions that enable the visualization of the Pareto solutions. The x-variable

for the follower is not included since the objective solves the follower’s maximum flow. The

variable w is also not utilized since the Pareto solution will be strictly less than the previous

cost solution.

200

The formulation of the network disrupting maximum flow problem for arcs only and

Pareto solutions (DMP-aP) follows:

min
∑

(i,j)∈E

yijbij(1− rij) +
∑

(i,j)∈E

zijbij (6.6a)

s.t.
∑

(i,j)∈E

cijyij ≤ R− ε, (6.6b)

∑
(i,j)∈E

yijbij(1− rij) +
∑

(i,j)∈E

zijbij ≥ F + ε, (6.6c)

ui − uj + zij + yij ≥ 0, ∀(i, j) ∈ E, (6.6d)

us = 0, (6.6e)

ut = 1, (6.6f)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (6.6g)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (6.6h)

ui ∈ {0, 1}, ∀i ∈ V. (6.6i)

The model identifies the minimum residual capacity cut (6.6a) subject to the total interdic-

tion resource consumption less than or equal to the budget R minus a small ε > 0 such as

10−6 (6.6b), and the total flow greater than or equal to the threshold F plus a small ε > 0

(6.6c). The values of R and F are initially set to ∞ and 0, respectively, and the model is

solved. The values of R and F are subsequently changed to the respective cost and flow so-

lutions, and the model is solved again. This process is repeated until the solution has a total

cost of 0 units. The cost and residual flow for each solution is plotted to generate a chart

that allows the visualization of the Pareto solutions. The Pareto solutions may be modified

to allow multiple strikes or any combination of the other extensions by incorporating the

necessary modifications to the DMP-aP model.

201

Figure 27. Pareto Solutions for (rij)1 (left) and (rij)2 (right) capacity reductions

Figure 27 depicts the Pareto solutions for the notional military transportation network

utilizing the (rij)1 (left side) and (rij)2 (right side) reduction values. Notice that in each

case, the flow in the residual network is not completely halted. The best the leader can do

is apply the minimum capacity cut to disrupt as much of the follower’s flow as possible.

Therefore, a decision maker can visualize the impact to the residual network as a result of

changes in the resource budget. The more resources are allocated to the targeting problem,

the smaller the residual flow is across the network. This trade-off visualization technique

provides the decision maker with awareness to the trade-off between targeting cost and

mission impact.

6.4 Summary

This chapter developed a number of models for network disrupting. This array of models

allows a decision maker to determine the arcs that should be targeted to maximize the

disruption of a network. These models represent attacks that do not completely destroy

the targeted arc(s), but rather diminish its (their) capability. The decision maker can then

ascertain the reduced capability of the adversary and plan additional missions to exploit the

disruption.

202

The contributions are summarized in Table 56. The baseline model for shortest path

disrupting was a modification of other work as an example. The maximum flow disrupting

model allows the decision maker to understand the impact of partial interdiction. The

maximum flow model was extended to consider limited resources, multiple strikes, a threshold

for mission success, and a visualization of Pareto solutions. In the next chapter, network

delaying tasks are considered.

Table 56. Disrupting Interdiction Task Contributions

Interdiction
Section Contribution Description

Task
Disrupt 6.2 DSP-a The disruptive shortest path prob-

lem for arcs only is similar to the
shortest path interdiction models of
Israeli and Wood [42].

6.2 DMP-a The disruptive maximum flow prob-
lem for arcs only utilizes features of
DSP-a to formulate a new model for
disrupting the maximum flow of a
network.

6.3.1 DMP-aR Extends DMP-a model.
The model represents disrupting
maximum flow over a network with
limited resources.

6.3.2 DMP-aM Extends DMP-a model.
The model represents disrupting
maximum flow over a network with
targeting for multiple strikes.

6.3.3 DMP-aT Extends DMP-a model.
The model represents disrupting
maximum flow over a network with
mission success if a threshold flow
level is achieved.

6.3.4 DMP-aP Extends DMP-a model.
The model represents identifying
the Pareto solutions for disrupting
maximum flow over a network.

203

VII. Delay Interdiction Tasks

7.1 Introduction

Figure 28. Research Framework: Modeling Delay Interdiction Tasks

In this chapter, a network interdiction modeling framework for delaying the restoration

of network resources is developed. The focus in this chapter is the ‘delay’ interdiction task

within the models approach of the research framework depicted in Figure 28. The chapter

develops a suite of optimization models that selects arcs for destruction to maximize the

time that the arcs will be unusable prior to their restoration.

Consider a military supply network. When an attacker plans a delay task, as defined

in this research, any targeted arcs are destroyed. Subsequently, the network operator (i.e.,

the military supply planners) must select alternate routes for their supplies or wait until

reconstruction is complete so supplies again traverse the network. Meanwhile, the network

operator will detect arc (i.e., road or bridge) destructions and begin the process of simul-

taneously restoring all destroyed arcs to full capacity. The attacker utilizes the time taken

by the operator to ascertain the situation, dispatch repair crews, and restore full functional-

204

ity so that other mission objectives may be executed while the adversary’s capabilities are

diminished.

Alternatively, consider a fiber optic communications network. Arcs may be utilized to

represent the fiber optic cable connections between servers. As soon as a cable is cut, the

network operator will ascertain which arc has been attacked. The network flow will correct

for the missing arc, and the operator will immediately dispatch a repair crew to reconnect

the affected servers with new fiber optic cable. The attacker may be able to conduct a denial

of service attack on the diminished network that would have been ineffective had the arc

not been severed. Conversely, the delay caused by the alternate routing may require enough

time for some other operation to proceed undetected. In both cases, it is assumed that the

network operator can immediately detect the destruction of an arc and has sufficient repair

resources to simultaneously repair any number of destroyed arcs.

A number of network interdiction models in the literature assume that arcs or nodes

are completely destroyed or damaged and the residual capabilities of the network remain at

that damaged level for the remainder of the model time horizon. However, an adversary will

begin to restore his or her capabilities as soon as it is practical to do so. When attacking an

adversary, it is more realistic to account for the time that the enemy capability is diminished

and monitor the progress of restoration. A minimum restoration time objective is developed

for a maximum flow network interdiction problem. Solutions for the minimum restoration

time objective are equivalent to solutions for which the objective is maximizing the delay in

restoring the network’s capabilities.

205

7.2 Model Development

Given a network with sets of nodes V and arcs E along with a source node s and terminus

node t, a typical minimum cut formulation (for arcs) [68] follows:

min
∑

(i,j)∈E

bijyij (7.1a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (7.1b)

us = 0, (7.1c)

ut = 1, (7.1d)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (7.1e)

ui ∈ {0, 1}, ∀i ∈ V. (7.1f)

In this formulation the binary decision variable yij indicates whether arc (i, j) is interdicted

(yij = 1) or not (yij = 0). The binary variable ui denotes whether node i is on the source

side of the cut (ui = 0) or the terminus side (ui = 1). The objective (7.1a) ensures that the

minimum capacity cut-set is selected with bij representing the capacity of arc (i, j). Con-

straint (7.1b) ensures that a cut is identified. The source and terminus nodes are indicated

via (7.1c) and (7.1d), respectively.

For many network interdiction problem models, two adversaries observe the same net-

work, and the leader (interdictor) attempts to cut the source-terminus flow, after which

the follower (network operator) seeks to maximize the flow on the residual network. The

minimum cut formulation ensures that all flow is cut, so the leader’s decision is determined

explicitly, with the implication is that the follower is left with a network that has no source-

terminus flow.

The minimum cut formulation as given in (7.1) assumes that the interdicted arcs remain

interdicted (completely destroyed) for the duration of the leader’s mission. However, the

206

interdictor may need to account for the time that the interdiction will be effective [56].

In other words, the attacker may want to account for the restoration time of the network

operator to ensure the interdiction is effective for the desired duration for the ensuing mission.

Therefore, assume that an arc is in one of three states: it is not targeted and allows flow up

to its capacity, it has been attacked and allows no flow because it has not yet been restored,

or it has been attacked but allows flow up to its capacity after the allocated restoration

time. Note that the models developed in this research assume complete restoration when

the time to restore an arc is realized. A more realistic partial restoration assumption may

be implemented as an extension of the baseline model.

Rocco et al. [56] propose this objective as a possibility when proposing multiple objectives

for the network interdiction problem. They do not present it in a mathematical programming

model but rather utilize Monte Carlo simulation to predict good solutions to multi-objective

network interdiction problems.

Figure 29 depicts a scenario for arcs being restored (all arcs are assumed to be restored

simultaneously) and the maximum flow increasing as arcs again become usable. At time 0

the interdiction task is accomplished and the network has a maximum flow indicated by the

shaded area during the first time step. All flow on the network may not be eliminated as

depicted in the figure when arcs are not impacted by the interdiction task, i.e., the restoration

Figure 29. Example network response from interdiction [56]

207

time has value 0. A number of arcs will be restored in the first time period. At that time,

the targeted arcs are restored, and the maximum flow adjusts to the maximum level for the

current residual network. At the completion of the next longest restoration time, additional

arcs regain their full capacity and a new maximum flow is realized for the residual network.

Eventually, all arcs in the cut set are assumed to be restored and the maximum network flow

is realized (right of the vertical dashed line representing the end of the mission’s duration).

Every targeted arc will eventually be restored since the maximum restoration time is given

explicitly. Uniform time increments for arc restoration are not required as depicted in the

figure.

Consider a finite time horizon over which the leader seeks to minimize the follower’s

maximum network flow. Denote this mission duration time by T . In the context of network

diverting, the mission duration is the amount of time the interdictor desires that the divert

set is rendered unusable for the network operator. Let tij ∈ {0, 1, 2, . . . , T} denote the time

to restore arc (i, j), where a 0 time to restore implies that the arc will operate up to full

capacity whether or not it is targeted for interdiction. The shaded area to the left of the

dashed line in Figure 29 represents the maximum flow over the mission duration. This

quantity represents a proxy for the speed with which the network is restored. Thus, an

objective that minimizes the area effectively will minimize the potential restoration time or,

equivalently, will maximize the delay in restoration of the network.

The area of the maximum flow over time is given by

(T − 0)
∑

(i,j)∈A
yij=1
tij=0

bij + (T − 1)
∑

(i,j)∈A
yij=1
tij=1

bij + · · ·+
∑

(i,j)∈A
yij=1

tij=T−1

bij. (7.2)

This expression computes the total of the maximum flow over each time increment up to T .

Each term effectively accounts for the increase in capacity of the maximum flow for each time

208

interval in the mission duration. Notice that the variable yij is binary; each sum contains

only a specific set of the arcs based on the value of t, and the entire sum is multiplied by

the difference between the mission duration and the restoration time. Moving this difference

inside each summation, substituting the value of t, and accounting for the binary state of

the variable yields

∑
(i,j)∈A

bijyij(T − tij). (7.3)

This expression accounts for the contribution of any interdicted arcs to the maximum al-

lowable flow after their restoration time is met. The indicator variable yij ensures that only

arcs in the cut are calculated, and limits the restoration times to be at most T allows the

calculation of the maximum flow over time to be used as a proxy for the minimum total

restoration time from the leader’s perspective.

The formulation of the minimum restoration time problem for arcs (MRTP-a) follows:

min
∑

(i,j)∈E

bijyij(T − tij) (7.4a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (7.4b)

us = 0, (7.4c)

ut = 1, (7.4d)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (7.4e)

ui ∈ {0, 1}, ∀i ∈ V, (7.4f)

with the objective as described for (7.3) and the constraints unchanged from the minimum

cut formulation (7.1b)-(7.1f).

209

This model may be appropriate if the attacker knows the duration of the restoration for

arcs but does not know the prioritization for the order in which arcs are restored or how

many crews will be assigned to work to simultaneously restore arcs. In other words, this

model presents a worst-case (for the attacker) restoration effect that is accounted for by the

leader planning the interdiction so as to minimize the amount of time that targeted arcs

operate at full capacity.

7.3 Testing

The MRTP-a model is tested on network instances that are generated as described in

Appendix A. The parameters utilized for each network case are given in Table 57. For

each of the 24 network structure cases listed, 30 replicates were generated. Additionally, a

reference for each network type is listed denoting the particular parameter setting utilized

as well as the average density for the network type over the 30 replicates. The values of

the restoration time-weight and the capacity-weight assigned to each arc in the network are

selected using a discrete (integer) uniform distribution having a range between 1 and 10,

inclusively. The value of the mission duration is 10, i.e., T = 10, in accordance with the

utilization of restoration times in the model.

The MRTP-a model is solved for the various random network instances using IBMr

ILOGr CPLEXr Optimization Studio V12.6. For each instance, two solutions are de-

termined. First, the MRTP-a model is solved with the y-variable relaxed to a continuous

variable bounded by 0 and 1. Second, the MRTP-a model is solved as stated in the model

formulation with the y-variables binary. In both cases, the u-variables are binary. The cases

test whether the solver is more suited for the given model utilizing the decision variable y

as binary or continuous.

Table 58 displays the MRTP-a results for the 100-node network instances. The network

structure and case reference are listed in the first two columns. The case values are found

210

in Table 57. For each of the solution approaches (i.e., y-variables relaxed or restricted

to binary values), the number of instances solved to optimality, mean solution time, and

number of iterations required are recorded. Finally, for the replicates of each network type,

the two-tailed paired-t test statistic is utilized to determine whether there is a difference in

the measure (i.e., mean solution time or number of iterations) with y-variables relaxed or

binary. In cases when the p-value is less than 0.05, there is sufficient evidence at the 0.05

level of significance to reject the claim that there is no difference in the measure when the

y-variables are relaxed or binary. For larger p-values, there is insufficient evidence at the 0.05

Table 57. Parameter settings for 100-node random network structures

Structure Parameters Case Mean Density

ER

β = 0, p = 0.1 1 0.098
β = 1, p = 0.1 2 0.099
β = 0, p = 0.5 3 0.500
β = 1, p = 0.5 4 0.502

BA

ma = 2, n0 = 25 5 0.091
ma = 5, n0 = 25 6 0.136
ma = 2, n0 = 55 7 0.318
ma = 10, n0 = 50 8 0.348

WS

k = 4, p = 0.10 9 0.040
k = 4, p = 0.25 10 0.040
k = 30, p = 0.10 11 0.303
k = 30, p = 0.25 12 0.303

PNDCG

β = 0, α = 2.35 13 0.025
β = 1, α = 2.35 14 0.025
β = 0, dist = U3,5 15 0.030
β = 1, dist = U3,5 16 0.030
β = 0, dist = U20,5 17 0.202
β = 1, dist = U20,5 18 0.202

Grid
10× 10 19 0.037
5× 20 20 0.038
20× 5 21 0.035

Star
10× 10 22 0.040
5× 20 23 0.040
20× 5 24 0.040

211

Figure 30. Density vs solution time for 100-node network instances tested

level of significance to reject the claim of no difference in the measure when the y-variables

are relaxed or binary.

The p-values corresponding to mean solution time are larger than 0.05 for all network

types except the low-density networks labeled Case 2 (ER) and 7 (BA). In addition, the

p-values for the number of iterations are larger than 0.05 for network Cases 5, 8, and 15. In

every network type having sufficient evidence at the 0.05 level of significance to reject the

claim that no difference in the measure, the binary model instance yielded an optimal solution

either more quickly or in fewer iterations. Therefore, for the network instances tested, the

model should be solved utilizing binary decision variables as denoted in the model statement,

all other things being equal.

Network density is graphed against solution times in Figure 30 for the network instances

tested. The line represents a linear approximation of the relationship between density and

solution time. For the networks tested, solution time increases with an associated increase

in network density. The coefficient of determination R2 between density and solution time,

212

given in parentheses in the legend of the chart, for the tested network cases is 0.909. The

large value of R2 suggests that there exists a strong linear relationship between density and

solution time when taking into account the variance over the 30 replicates of each case. The

number of iterations did not exhibit a linear relationship (R2 = 0.001) with network density

for the networks instances tested.

213

Table 58. Comparison of results for MRTP-a with y relaxed and binary

Structure Case
y Relaxed y Binary 2-Tail p-value

Solved Mean Time Mean Its # Solved Mean Time Mean Its Time Iterations

ER

1 30 / 30 0.022 97.2 30 / 30 0.023 97.0 0.706 0.096
2 30 / 30 0.019 107.2 30 / 30 0.023 106.3 0.042 0.167
3 30 / 30 0.100 106.9 30 / 30 0.106 106.8 0.106 0.161
4 30 / 30 0.104 111.1 30 / 30 0.117 111.1 0.186 1

BA

5 30 / 30 0.019 3.6 30 / 30 0.017 3.3 0.152 0.039
6 30 / 30 0.027 10.2 30 / 30 0.028 10.2 0.782 1
7 30 / 30 0.059 3.1 30 / 30 0.050 3.0 0.006 0.161
8 30 / 30 0.068 12.9 30 / 30 0.065 12.8 0.053 0.043

WS

9 30 / 30 0.013 102.4 30 / 30 0.012 102.1 0.540 0.067
10 30 / 30 0.013 99.7 30 / 30 0.014 99.6 0.412 0.662
11 30 / 30 0.059 129.0 30 / 30 0.061 128.9 0.564 0.161
12 30 / 30 0.058 117.2 30 / 30 0.059 117.1 0.659 0.161

PNDCG

13 30 / 30 0.013 57.2 30 / 30 0.014 53.2 0.402 0.098
14 30 / 30 0.011 52.5 30 / 30 0.011 51.3 0.963 0.353
15 30 / 30 0.009 80.1 30 / 30 0.011 79.2 0.278 0.026
16 30 / 30 0.010 72.1 30 / 30 0.012 71.2 0.247 0.076
17 30 / 30 0.041 108.8 30 / 30 0.043 108.7 0.196 0.326
18 30 / 30 0.042 108.2 30 / 30 0.041 108.1 0.743 0.103

Grid
19 30 / 30 0.012 130.9 30 / 30 0.012 130.3 0.807 0.260
20 30 / 30 0.013 121.3 30 / 30 0.014 120.9 0.345 0.317
21 30 / 30 0.011 117.6 30 / 30 0.013 117.9 0.276 0.442

Star
22 30 / 30 0.014 113.5 30 / 30 0.014 113.2 0.711 0.161
23 30 / 30 0.011 61.4 30 / 30 0.011 60.7 0.782 0.230
24 30 / 30 0.012 126.8 30 / 30 0.011 126.8 0.820 1

214

7.4 Model Extensions

The models that maximize the delay of restoration can be modified to account for several

extensions. Each of the modifications are implemented individually, unless noted otherwise.

Multiple changes can be incorporated in a single model if necessary by making each of the

appropriate modifications.

The MRTP-a model is modified utilizing the nodal interdiction method described by

Kennedy et al. [45]. The decision variable vi is introduced where vi = 1 if node i is interdicted

and vi = 0 otherwise. With the modification to allow nodal interdiction, restoration time ti

for each node is introduced. This leads to a formulation for the minimum restoration time

problem for nodes only (MRTP-n):

min
∑

(i,j)∈E

bijyij(T − ti) (7.5a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (7.5b)

us = 0, (7.5c)

ut = 1, (7.5d)

yij = vi, ∀(i, j) ∈ E, (7.5e)

v` = 0, ` = s, ` = t, (7.5f)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (7.5g)

v` ∈ {0, 1}, ∀` ∈ V, (7.5h)

ui ∈ {0, 1}, ∀i ∈ V. (7.5i)

In this model, the objective maximizes the delay of restoring nodes in the residual network.

The arc capacities of outbound arcs from the interdicted node are restored after the node’s

restoration time is realized. The addition of Constraint (7.5e) enforces the cut of outgoing

215

arcs from the interdicted node. Constraint (7.5f) ensures that the source and terminus are

not interdicted. The decision variable indicating which nodes are interdicted is binary in

Constraint (7.5h). All remaining constraints are as described for the MNDP-a model.

To modify the MRTP-n to allow both node and arc interdiction, the objective is modified

to account for node and arc costs. The model interdicts every outgoing arc from a node when

it is attacked via the y-variable. Therefore, it is necessary to separate the arc and node

restoration activities. Additionally, Constraint (7.5e) becomes yij ≥ vi,∀(i, j) ∈ E. This

allows for either arc or node interdiction. Thus, the formulation of the minimum restoration

time problem for both arcs and nodes (MNDP-b) is:

min
∑

(i,j)∈E

(bij(yij − vi)) (T − tij) +
∑

(i,j)∈E

bijyij(T − ti) (7.6a)

s.t. ui − uj + yij ≥ 0, ∀(i, j) ∈ E, (7.6b)

us = 0, (7.6c)

ut = 1, (7.6d)

yij ≥ vi, ∀(i, j) ∈ E, (7.6e)

v` = 0, ` = s, ` = t, (7.6f)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (7.6g)

v` ∈ {0, 1}, ∀` ∈ V, (7.6h)

ui ∈ {0, 1}, ∀i ∈ V. (7.6i)

The objective (7.6a) separates the arc (first summand) and node (second summand) contri-

butions to the allowable flow after the respective arc or node restoration time is satisfied.

The remaining constraints are as described for the MNDP-n model with the modification of

the inequality for Constraint (7.6e).

216

Finally, the MRTP-a formulation is modified to account for a case where there are insuffi-

cient resources to interdict each arc in the cut set. To facilitate this change, a partition of the

cut into those selected and those not actually interdicted but still in the cut set is utilized,

similar to the method of Wood [68]. The variable zij is added which denotes whether arc

(i, j) is in the cut but not targeted for attack. The amount of interdiction resources required

to target the flow on an arc is denoted rij and the amount the attacker has available is R.

This gives the minimum restoration time problem for arcs only with resource constraints

(MRTP-aR).

min
∑

(i,j)∈E

bijyij(T − tij) + bijzijT − εw (7.7a)

s.t.
∑

(i,j)∈E

rijyij + w = R, ∀(i, j) ∈ E, (7.7b)

ui − uj + zij + yij ≥ 0, ∀(i, j) ∈ E, (7.7c)

us = 0, (7.7d)

ut = 1, (7.7e)

yij ∈ {0, 1}, ∀(i, j) ∈ E, (7.7f)

zij ∈ {0, 1}, ∀(i, j) ∈ E, (7.7g)

ui ∈ {0, 1}, ∀i ∈ V. (7.7h)

In this model, the objective is partitioned in accordance with the partitioning of the cut set.

The first term accounts for the contribution of any interdicted arcs to the maximum flow

after its restoration time is met. The second term accounts for the contribution of any arcs

in the cut set but not targeted to the maximum flow throughout the mission duration. The

indicator variables yij and zij ensure that only arcs in the cut are calculated, yielding the

217

average maximum flow time which is used as a proxy for the minimum restoration time from

the attacker’s perspective.

Constraint (7.7c) ensures that the available interdiction resource allotment is not exceeded

and that only those arcs selected to be in the cut and targeted are counted toward the resource

consumption. Constraint (7.7c) ensures that the cut set is partitioned into those arcs that

are targeted via the y variable and those that are not via the z variable. The decision variable

indicating the arcs in the cut that are not targeted is binary in Constraint (7.7g).

As the amount of interdiction resources diminish, the model selects arcs for the cut that

will operate at full capacity for the entire time horizon. Constraint (7.7b) introduces a

slack-like variable w representing the residual resource (equivalent to unused resource) and

a multiple of this residual is included in the objective function to reward the conservation of

resources (similar to the construct of Kallemyn et al. [44]). Because the residual is largest

when conserving the resource, an ε multiple of the residual resource is added in the minimiz-

ing objective. The ε should be small enough that the magnitude of the actual network flow

is not altered, but not so small that the effect of resource conservation is lost. In effect, the

use of this term in the objective acts as a penalty function on the expenditure of interdiction

resources and discriminates multiple optimal solutions, if any exist.

7.5 Summary

This chapter described and developed models to delay the restoration of a network af-

ter interdiction. The suite of models developed in this chapter allows a decision maker to

determine the arcs that should be targeted to maximize the delay in the network’s restora-

tion. This is accomplished by maximizing the estimated down time for the arcs. With this

knowledge, a decision maker can plan operations that exploit the delay and execute missions

undetected.

218

The contributions of this chapter are summarized in Table 59. A minimum cut formu-

lation was modified to model maximizing the delay in network restoration. This model was

solved for several test instances. Testing demonstrated that utilizing binary decision vari-

ables in the solver was appropriate and the density of the network topology impacts solution

times for the tested network instances. Finally, testing illustrated that on network instances

having the same density and structure but different parameter settings, solution times may

not be impacted, but the number of iterations might.

Table 59. Delaying Interdiction Task Contributions

Interdiction
Section Contribution Description

Task
Delay 7.2 MRTP-a The minimum restoration time

problem for arcs only accounts for
the contribution of any interdicted
arcs to the maximum allowable flow
after their restoration time is met.

7.4 MRTP-n Extends MRTP-a model.
The model represents delaying the
restoration of nodes contained in a
network based on maximum flow.

7.4 MRTP-b Extends MRTP-a model.
The model represents delaying the
restoration of arcs and/or nodes
contained in a network.

7.4 MRTP-aR Extends MRTP-a model.
The model represents delaying the
restoration of arcs contained in a
network with limited resources.

219

VIII. Conclusion

8.1 Summary

Figure 31. Research Framework

The research framework is again depicted in Figure 31. Each of the chapters in the

dissertation addressed determining the interdiction benefit of a node or arc from a measures

or models perspective. The four interdiction tasks outlined in joint defense doctrine provided

the framework from which to represent them in the models employed. The measures and

models comprise a suite of tools a decision maker can utilize to determine the best targets

for a given scenario and interdiction task combination.

8.2 Contributions

A number of theoretical developments and extensions or applications were developed

and tested in this dissertation. These contributions are summarized in this section. Each

approach (i.e., measures and models) is discussed separately.

In the measures approach of the dissertation, three contributions were developed. The

measures approach focused on the ‘destroy’ interdiction task in Chapter III. First, an algo-

220

rithm used in practice was extended to account for all geodesics and a number of measures.

This contribution is an extension and application of previous work. Next, a new approach

was developed to account for the removal of each node contained in a network. This theoreti-

cal contribution utilizes the extended algorithm to determine the impact each node’s removal

has on geodesic lengths within the residual network. Finally, a number of new measures were

introduced to assess the impact of the removal of nodes in a network.

Whereas the measures approach considered the ‘destroy’ interdiction task only, the mod-

els approach examined each of the four interdiction tasks identified in joint doctrine, i.e.,

‘destroy’, ‘divert’, ‘disrupt’, and ‘delay’ tasks. For the models approach to ‘destroy’ in-

terdiction tasks in Chapter IV, the theoretical contribution includes the development of a

new modeling approach for identifying the arcs in the network whose destruction result in

interdicting the k shortest paths.

The ‘divert’ interdiction task was previously undefined in the open literature as defined

in joint doctrine. To address this theoretical gap in modeling interdiction tasks, a modeling

approach for diverting as defined in joint doctrine was developed in Chapter V. To accomplish

this development, mathematical programming techniques common to network interdiction

and multicriteria optimization were applied to solve the newly posed diverting problem.

The models approach for ‘disrupt’ interdiction tasks extended the approach of others,

which increased length of shortest paths, in a new application for modeling disruptions in

maximum flow network models. Additionally, a new problem was proposed to determine

threshold for expected damage to ensure successful interdiction.

Finally, in Chapter VII the ‘delay’ interdiction task was examined. An ill-defined objec-

tive function utilized in other work for Monte Carlo simulation was transformed to a network

interdiction model objective function. This new objective function allowed the delay in net-

work restoration time to be maximized in maximum flow models.

These developments are listed with a section reference and brief description in Table 60.

221

Table 60. Dissertation Contributions

Interdiction Task Section Contribution Description

Destroy 3.3.1 EAGL Algorithm The Extended All Geodesics Lengths (EAGL) Algorithm

takes the features of previous algorithms (i.e., retain-

ing all geodesic and predecessor information, computing

node dependencies, and counting occurrences of nodes on

geodesics) to construct a more robust algorithm.

3.4.1 GAND Approach The Geodesics After Node Destruction (GAND) Ap-

proach determines the impact on the geodesic lengths

between all node pairs in the network as a result of each

node’s destruction.

4.2 MAD The maximum flow arc destroying model ensures that the

leader’s minimum cost source-terminus cut set is selected

eliminating the follower’s flow.

4.3 SAD The shortest path arc destroying model identifies a single

arc in the intersection of the leader’s source-terminus cut

set and the follower’s shortest path.

4.3 SAD-kI Extends SAD model.

The model selects k arcs in the leader’s minimum cost

cut set to interdict the k shortest arc-independent paths.

4.3 SAD-k Extends SAD model.

The model identifies the k arcs in the leader’s minimum

cut set that interdict the follower’s k shortest paths.

Continued on next page

222

Table 60 – Continued from previous page

Interdiction Task Section Contribution Description

Divert 5.2 MNDP-a The maximum flow network diverting problem for arcs

only determines the leader’s minimum cost source-to-

divert set cut while maximizing the remaining source-

to-terminus flow on the network for the follower.

5.3 SNDP-a The shortest path network diverting problem for arcs

only determines the leader’s minimum cost source-to-

divert set cut to ensure no path for the follower traverses

the divert set.

5.4 SNDP-aM Extends SNDP-a model.

The model represents diverting shortest paths from mul-

tiple divert sets.

5.4 MNDP-n Extends MNDP-a model.

The model represents diverting the follower’s residual

flow from the divert set by targeting nodes.

5.4 MNDP-b Extends MNDP-a model.

The model represents diverting the follower’s residual

flow from the divert set by targeting arcs and/or nodes.

5.4 SNDP-aT Extends SNDP-a model.

The model represents targeting arcs such that the total

distance traversed within the divert set is less than a

threshold.

Continued on next page

223

Table 60 – Continued from previous page

Interdiction Task Section Contribution Description

5.4 MNDP-aR Extends MNDP-a model.

The model represents diverting the residual flow from the

divert set with limited resources.

Disrupt 6.2 DSP-a The disruptive shortest path problem for arcs only is sim-

ilar to the shortest path interdiction models of Israeli and

Wood [42].

6.2 DMP-a The disruptive maximum flow problem for arcs only uti-

lizes features of DSP-a to formulate a new model for dis-

rupting the maximum flow of a network.

6.3.1 DMP-aR Extends DMP-a model.

The model represents disrupting maximum flow over a

network with limited resources.

6.3.2 DMP-aM Extends DMP-a model.

The model represents disrupting maximum flow over a

network with targeting for multiple strikes.

6.3.3 DMP-aT Extends DMP-a model.

The model represents disrupting maximum flow over a

network with mission success if a threshold flow level is

achieved.

6.3.4 DMP-aP Extends DMP-a model.

The model represents identifying the Pareto solutions for

disrupting maximum flow over a network.

Continued on next page

224

Table 60 – Continued from previous page

Interdiction Task Section Contribution Description

Delay 7.2 MRTP-a The minimum restoration time problem for arcs only ac-

counts for the contribution of any interdicted arcs to the

maximum allowable flow after their restoration time is

met.

7.4 MRTP-ac Extends MRTP-a model.

The model represents delaying the restoration of nodes

contained in a network based oon node capacities.

7.4 MRTP-n Extends MRTP-a model.

The model represents delaying the restoration of nodes

contained in a network based on maximum flow.

7.4 MRTP-b Extends MRTP-a model.

The model represents delaying the restoration of arcs

and/or nodes contained in a network.

7.4 MRTP-aR Extends MRTP-a model.

The model represents delaying the restoration of arcs

contained in a network with limited resources.

225

8.3 Future Research

In Chapter III, there appeared to be a density threshold at which the F-W algorithm

becomes more efficient than a repeated application of the BFS or Dijkstra’s algorithm (pos-

sibly when density is near 0.35). However, in the open literature, this threshold has not been

explored. “There is no strict distinction between sparse and dense [networks].” [8] General

guidance indicates that the F-W algorithm is appropriate for dense graphs and RD-type

algorithms are more suited to sparse graphs. A designed experiment and analysis of com-

putation times for the geodesic matrix utilizing the two methods would provide an initial

estimate for the value of such a threshold.

As outlined in Chapter III, when studying the impact of large-scale node removals to

networks, it is important to quickly characterize the connectedness of the residual network

and the size of the largest connected component. These features are computed utilizing

the eigenvalues and associated eigenvectors of the Laplacian matrix. This analysis may be

completed and will be a useful addition to the suite of interdiction models and measures

available to decision makers.

The network diverting models developed in this research utilize minimum cost cuts to

model the leader problem. An alternative is to utilize the isolation set model to determine

the nodes and/or arcs that should be targeted to separate the divert set from the rest of the

network.

The models currently utilized to assess interdiction operations against a network do not

consider multiple interdiction tasks being completed simultaneously. It is likely that mission

objectives will require that different interdiction tasks be accomplished in nearby areas of the

network. The compounding and cascading effects of interdiction activities can be combined

to accomplish the goals more efficiently in a single model.

226

Furthermore, the majority of interdiction models in the literature generally assume in-

terdiction tasks are directed against a single-layered network. While it is possible that an

adversary’s infrastructure can be modeled as a single-layer network with interconnections,

perhaps it nay be more appropriate to model interdiction tasks against multi-layered net-

works. Separating individual layers within the infrastructure into functional networks with

interdependencies connecting the layers will allow analysis of the interdiction benefit through

decomposition methods. This allows the identification of critical nodes and/or arcs in an

adversary’s multi-layered infrastructure, given a specific interdiction task or combination of

interdiction tasks.

Finally, an interdiction task in an infrastructure network can be indirect. An indirect

interdiction task would affect nodes or arcs in other areas of a network but with the desired

goal taking effect in a specific area of the network. By considering interdiction activities

exclusively outside the area in which the goal is to take effect, the mission is accomplished

without bringing heightened awareness to the objective. This type of analysis will assume

that the cascading and compounding effects are intentional and that an attack in one area

is used to realize a deliberate effect in another area of the network.

227

8.4 Concluding Remarks

This research developed a suite of models and measures to aid decision makers in delib-

erate and rapid planning and analysis of interdiction tasks. The interdiction benefit of nodes

and/or arcs was determined for destroying, diverting, disrupting, and delaying network ca-

pabilities. This array of measures and models may serve as modeling options for offensive

and defensive operations. The operations that can be considered when utilizing this suite of

measures and models may be either kinetic or non-kinetic actions such as detailed observa-

tion, signals collection, denial of service, or possibly destruction. Thus, the suite of models

and measures developed in this dissertation provide a foundation for analysis of operational

offensive and/or defensive plans and a launch point for future research.

228

Appendix A. Test Plan

The measure algorithms and optimization models in this research were tested on notional

networks. The level of testing performed varied depending on the nature of the performance

claim. Jackson et al. [43] identified three potential performance claims and the appropriate

level of testing to support the claim. First, preliminary testing “on several well-chosen

problems would probably suffice” for demonstrating the feasibility of the implementation of

an algorithm or the models from which numerical results are produced [43:p.416]. The next

level of testing is more detailed; the “strengths and weaknesses of an implementation” can

be assessed using an appropriately chosen range of problems [43:p.416]. Finally, a “detailed

comparison of the performance. . . with prominent methods already available” should be used

to substantiate performance claims. The measures assessed should be comparable for each

of the methods tested [43:p.416]. These guides were used where appropriate to substantiate

performance claims when a computation was made in this research.

Random networks are useful because a number of networks can be generated and stored

for testing by replicating the random draws that define weights within the network. Several

instances of random networks are considered. Grid and star-mesh networks have a fixed

topology for given size parameters. Random networks are generated to have features that

mimic types of real-world networks. Finally, random networks can be constructed using a

network generator.

Grid networks are the most straight-forward to implement and have been used to test

many of the network interdiction models in the open literature. A grid network is comprised

of nodes aligned on an h × v grid that are connected to other nodes along vertical and

horizontal arcs within the grid. Figure 32 illustrates a 4× 4 grid network with source s and

terminus t.

Star-mesh networks are also relatively straight-forward. A central node is the source

and has c concentric rings each with r nodes equally spaced around the ring along rays

229

emanating from the central node. The nodes are connected along the rings and along the

spokes. A terminus node is selected from the nodes on the outermost ring. A notional

star-mesh network having c = 2 concentric rings, each containing r = 8 nodes along rays

emanating from the center, is depicted in Figure 33.

Random grid and star-mesh networks have been used to test network interdiction models.

A number of papers related to network diversion tested interdiction models using these

network types [19] [20] [26]. In addition, it may be useful to consider random networks.

Erdős-Rényi networks, Barabási-Albert networks, and Watts-Strogatz networks are typically

used to generate random networks.

Erdős-Rényi (ER) networks are constructed by connecting a set of all nodes randomly [25].

The parameter p represents the probability that any given node-pair is connected and there-

Figure 32. Example of a grid network

Figure 33. Example of a star-mesh network

230

fore is a proxy for the density. Figure 34 depicts an ER network where each of 10 nodes is

connected with a probability p of 25 percent. Because the arcs are included in the network

with probability p, the degree distribution for any node is binomial [54].

Barabási-Albert (BA) networks are constructed by completely connecting a set of initial

nodes and connecting additional nodes (preferring the most connected nodes) until the de-

sired total is reached [4]. The parameter n0 denotes the number of nodes that are initially

completely connected and ma denotes the number arcs that are connected for each additional

node until the desired total is attained. A BA network is illustrated in Figure 35 that was

constructed utilizing an initial set of n0 = 6 nodes and connecting a single node via a single

arc (ma = 1) until a total of ten nodes is attained.

Figure 34. Example of an ER network

Figure 35. Example of a BA network

231

Watts-Strogatz (WS) networks are constructed by beginning with a lattice structure of

nodes and ‘rewiring’ nodes randomly [64]. Figure 36 displays a WS network consisting of

ten nodes in a lattice having parameters k = 4 and p = 0.1, indicating that each node is

initially connected to four others (two in each direction along the lattice) and ten percent of

the initial arcs are rewired.

Alternatively, Morris et al. developed a network generator, the Prescribed Node Degree,

Connected Graph (PNDCG), that takes as an input the number of nodes, a degree distribu-

tion, and a parameter indicating the amount of clustering desired. The algorithm generates

a connected network with the desired degree distribution. Extensions of the algorithm allow

altering the amount of clustering and degree correlation in the network [51]. The network in

Figure 37 was constructed for ten nodes having an equally likely probability (20%) of having

degree one, two, three, four, or five, and a desired clustering of 100 percent (β = 1) utilizing

the generator. The ER networks are generated using the PNDCG generator with a input

of the binomial distribution for the parameter p as the degree distribution and clustering

on or off as indicated by β = 1 or β = 0, respectively. This ensures that the ER networks

are connected, rather than testing for connectivity before accepting a randomly generated

network otherwise.

Figure 36. Example of a WS network

232

The test bank includes networks with about 100 nodes or roughly 1,000 nodes. Each level

of network size has a low and high density (number of arcs). The density γ of a network is

given by

γ =
2m

n(n− 1)
.

Networks with density levels less than 0.15 (low-density) and more than 0.30 (high-density)

were utilized within the test bank. The grid and star-mesh network structures populate the

low-density networks, while the random networks were used across all density levels. The

appropriate parameters will be used to ensure correct sizes and densities for the described

experiments when generating the networks. The test bank was used to evaluate each of

the methods. The appropriate summary statistics for solution times was reported. Any

additional measures appropriate for the given test was reported as well.

Table 61 enumerates the parameter settings for the randomly generated networks. For

each network size, the appropriate parameters are given for low- and high-density networks.

For each type of network in the test plan, an adjacency matrix was generated. For testing

maximum flow and shortest path models, source and terminus nodes were selected. The

source node for all network instances is node 1. The terminus is node n, where n is the

number of nodes in the instance, for grid, star-mesh, ER, and PNDCG networks. In WS

Figure 37. Example of a PNDCG network

233

Table 61. Random Network Parameters

n ≈ 100 n ≈ 1, 000

γ < 0.15 γ > 0.30 γ < 0.15 γ > 0.30

Grid

Square
h = 10

v = 10
N/A

h = 32

v = 32
N/A

Tall Rectangle
h = 5

v = 20
N/A

h = 10

v = 100
N/A

Wide Rectangle
h = 20

v = 5
N/A

h = 100

v = 10
N/A

Star-Mesh

Even
r = 10

c = 10
N/A

r = 32

c = 32
N/A

More Rings
r = 5

c = 20
N/A

r = 10

c = 100
N/A

More Rays
r = 20

c = 5
N/A

r = 100

c = 10
N/A

ER
β = 0 p = 0.1 p = 0.5 p = 0.1 p = 0.5

β = 1 p = 0.1 p = 0.5 p = 0.1 p = 0.5

BA
ma = 2 n0 = 25 n0 = 55 n0 = 250 n0 = 550

ma = n0

5
n0 = 25 n0 = 50 n0 = 250 n0 = 500

WS
p = 0.1 k = 4 k = 30 k = 40 k = 300

p = 0.25 k = 4 k = 30 k = 40 k = 300

PNDCG

No clustering dist = U3,5 dist = U20,5 dist = U3,5 dist = U200,5

β = 0 α = 2.35 N/A α = 2.35 N/A

Clustering dist = U3,5 dist = U20,5 dist = U3,5 dist = U200,5

β = 1 α = 2.35 N/A α = 2.35 N/A

networks, node n
2

was selected as the terminus, since node n is likely connected to node 1

due to the initial lattice structure. For BA networks, the terminus is node n0. This ensures

that more than ma paths to the terminus are available and therefore larger flow.

For each entry in the table, a random network was generated. The adjacency matrix was

stored. In addition, distance, capacity, interdiction cost, and restoration time were generated

234

Table 62. Data Generated for Random Networks

Type Data Name Size Values

Arc

Adjacency A n× n -
Distance D n× n Uniform(1,10)
Capacity C n× n Uniform(1,10)
Interdiction Cost B n× n Uniform(1,10)
Restoration Time R n× n Uniform(1,10)

Node
Capacity CN n× 1 Uniform(1,10)
Interdiction Cost BN n× 1 Uniform(1,10)
Restoration Time RN n× 1 Uniform(1,10)

General

Source Node S 1× 1 1
Terminus Node T 1× 1 n or n

2

Connected Set J
(
n
20
, n

10

)
× 1 -

Mission Duration L 1× 1 10

for each arc. Likewise, capacity, interdiction cost, and restoration time information was

generated for each node. The values of these parameters were selected using a discrete

uniform distribution with a range between 1 and 10.

Finally, for each network, a set J of connected nodes was selected (to be the divert set or

another subset of nodes). An arbitrary node was selected that is not connected to the source

or terminus. Subsequently, a node that is connected to the set J (and not connected to the

source or terminus) is added to the set. This was repeated until there were between n
20

and

n
10

nodes in the set. For BA networks, the restriction of nodes connected to the source or

terminus is unattainable since such a large portion of the network is connected to the source

in its construction, so nodes connected to the source or terminus were allowed in the set. In

some instances of low-density networks, the size of the set is allowed to contain fewer nodes

because the there were no other nodes connected to the set that could be selected.

Thus, for each network case in the test plan, a number of random networks was gen-

erated along with the parameters listed in Table 62. The randomly generated networks

and associated data was stored so comparisons could be made between the networks. The

mission duration L which is used for restoration time models is 10 for all networks. This

235

value allowed certain interdiction tasks to be effective for the duration of the time horizon

considered since the largest possible restoration time was 10.

236

Appendix B. Poster

237

PROBLEM STATEMENT
Gtven a networK tdenttfy the arcs
and/or nodes to target that are most
effecttve tn destroytng dtverttng
dtsrupllng, or delaytng tis capabtltttes

DEFINITIONS
DESTROY- acttons that render enemy
targets ineffective or useless
DIVERT- actions that divert enemy
assets from areas they are required
DISRUPT- actions that tnterrupt or
impede enemy capabilittes
DELAY- actions that delay the time of
arnval of enemy capabilities
·/.JI'!I:to~)-00 . 0,X:,.A'1: ~JOI.'I!U!SY!:IC:Ja10pera!I<YIS

BACKGROUND
M tsston planners seeK to target nodes
and/or arcs in networks that have the
greatest benefit for an operational plan

An tnterdictlon tasK an event that targets
the nodes and/or arcs of a networK
resulting tn its capabiltltes betng
destroyed. diverted. disrupted. or
delayed

Lessons learned from studying networK
interdtction model outcomes help to
in form attacK strategies Conversely. the
same models can be used to help
id·entify critical nodes and/or arcs in
networks that must be defended and/or
hardened

Modeling Network
Interdiction Tasks

Maj Benjamin s. Kallemyn
Committee: Dr. Richard F. Deckro (Advisor)

LTC Brian J . Lunday, PhD

Interdiction
Tasks

Lt Col Matthew J . Robbins, PhD
Maj Dustin G. Mixon, PhD

FOIL

Bibliography

[1] Doctrine for Joint Interdiction Operations. Joint Publication 3-03, Department of De-
fense, October 14, 2011.

[2] “Israel Strikes Symbols of Hamas’ Control in Gaza, Shuts down Power Plant”,
FoxNews.com, Published: July 29, 2014. (Retrieved July 29, 2014).

[3] Ahuja, Ravindra K., Thomas L. Magnanti, and James B. Orlin. Network flows: theory,
algorithms, and applications. Prentice hall, 1993.

[4] Barabási, Albert-László and Réka Albert. “Emergence of scaling in random networks”,
science, 286(5439):509–512, 1999.

[5] Bard, Jonathan F. Practical bilevel optimization: algorithms and applications. Springer,
1998.

[6] Bazaraa, Mokhtar S., John J. Jarvis, and Hanif D. Sherali. Linear programming and
network flows. John Wiley & Sons, 2005.

[7] Bellmore, M., G. Bennington, and S. Luhore. “A network isolation algorithm”, Naval
Research Logistics Quarterly, 17(4):461–469, 1970.

[8] Black, Paul E. ““sparse graphs””. in Dictionary of Algorithms and Data Structures
[online], Vreda Pieterse and Paul E. Black eds., 14 August 2008. Available from:
http://www.nist.gov/dads/HTML/rootedtree.html (accessed 19 March 2015).

[9] Bracken, Jerome and James T. McGill. “Mathematical programs with optimization
problems in the constraints”, Operations Research, 21(1):37–44, 1973.

[10] Brandes, Ulrik. “A faster algorithm for betweenness centrality”, Journal of Mathemat-
ical Sociology, 25(2):163–177, 2001.

[11] Brandes, Ulrik. “On variants of shortest-path betweenness centrality and their generic
computation”, Social Networks, 30(2):136–145, 2008.

[12] Chartrand, Gary, Linda Lesniak, and Ping Zhang. Graphs & digraphs. CRC Press, 2010.

[13] Chartrand, Gary and Songlin Tian. “Distance in Digraphs”, Computers & Mathematics
with Applications, 34(11):15 – 23, 1997.

[14] Cintron-Arias, Ariel, Norman Curet, Lisa Denogean, Robert Ellis, Corey Gonzalez,
Shobha Oruganti, and Patrick Quillen. “A Network Diversion Vulnerability Problem”,
2000.

[15] Collado, Ricardo A. and David Papp. Network interdiction–models, applications, unex-
plored directions. Technical report, Rutcor Research Report, 2012.

238

[16] Corley, H.W. and David Y. Sha. “Most vital links and nodes in weighted networks”,
Operations Research Letters, 1(4):157–160, 1982.

[17] Corley Jr, H.W. and Han Chang. “Finding the n most vital nodes in a flow network”,
Management Science, 21(3):362–364, 1974.

[18] Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, et al.
Introduction to algorithms, volume 2. MIT press Cambridge, 2001.

[19] Cullenbine, Christopher A., R. Kevin Wood, and Alexandra M. Newman. “Theoretical
and computational advances for network diversion”, Networks, 2013. Forthcoming.

[20] Curet, Norman D. “The network diversion problem”, Military Operations Research,
6(2):35–44, 2001.

[21] Curet, Norman D., Jason DeVinney, and Matthew E. Gaston. “An efficient network
flow code for finding all minimum cost s-t cutsets”, Computers & Operations Research,
29(3):205–219, 2002.

[22] Dempe, Stephan. Foundations of bilevel programming. Springer, 2002.

[23] Ding, Chris HQ, Xiaofeng He, and Hongyuan Zha. “A spectral method to separate
disconnected and nearly-disconnected web graph components”. Proceedings of the sev-
enth ACM SIGKDD international conference on Knowledge discovery and data mining,
275–280. ACM, 2001.

[24] Ehrgott, Matthias. Multicriteria optimization, volume 2. Springer, 2005.

[25] Erdős, Paul and Alfréd Rényi. “On random graphs”, Publicationes Mathematicae De-
brecen, 6:290–297, 1959.

[26] Erken, Ozgur. A branch-and-bound algorithm for the network diversion problem. Ph.D.
thesis, Monterey, California. Naval Postgraduate School, 2002.

[27] Fiedler, Miroslav. “Algebraic connectivity of graphs”, Czechoslovak Mathematical Jour-
nal, 23(2):298–305, 1973.

[28] Floyd, Robert W. “Algorithm 97: Shortest Path”, Commun. ACM, 5(6):345, June
1962. ISSN 0001-0782.

[29] Ford, L.R. and D.R. Fulkerson. Flows in networks, volume 3. Princeton University
Press, 1962.

[30] Freeman, Linton C. “Centrality in social networks conceptual clarification”, Social
networks, 1(3):215–239, 1979.

[31] Fulkerson, D Ray and Gary C Harding. “Maximizing the minimum source-sink path
subject to a budget constraint”, Mathematical Programming, 13(1):116–118, 1977.

239

[32] Gergana. “Octave Networks Toolbox First Release”, July 2014.

[33] Ghare, PM, Douglas C Montgomery, and WC Turner. “Optimal interdiction policy for
a flow network”, Naval Research Logistics Quarterly, 18(1):37–45, 1971.

[34] Gimbert, Joan and Nacho López. “On the construction of radially Moore digraphs.”,
Ars Comb., 110:455–467, 2013.

[35] Golden, Bruce. “A problem in network interdiction”, Naval Research Logistics Quar-
terly, 25(4):711–713, 1978.

[36] Gorman, Sean P. and Edward J. Malecki. “The networks of the Internet: an analysis
of provider networks in the USA”, Telecommunications Policy, 24(2):113–134, 2000.

[37] Gross, Jonathan L. and Jay Yellen. Handbook of graph theory. CRC press, 2004.

[38] Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart. “Exploring network structure,
dynamics, and function using NetworkX”. Proceedings of the 7th Python in Science
Conference (SciPy2008), 11–15. Pasadena, CA USA, August 2008.

[39] for Health Statistics (US), National Center. “Health, United States, 2009:
With special feature on medical technology”, Jan 2010. Available from:
http://www.ncbi.nlm.nih.gov/books/NBK44737/.

[40] Herbranson, Travis J., Richard F. Deckro, James W. Chrissis, and Jonathan Todd
Hamill. “Considering the isolation set problem”, European Journal of Operational Re-
search, 227(2):268 – 274, 2013.

[41] Herodotus. The Histories. Trans. A. D. Godley (Cambridge: Harvard University Press,
1920), Perseus Digital Library. http://www.perseus.tufts.edu (Retrieved July 24, 2014).

[42] Israeli, Eitan and R. Kevin Wood. “Shortest-path network interdiction”, Networks,
40(2):97–111, 2002.

[43] Jackson, Richard H.F., Paul T. Boggs, Stephen G. Nash, and Susan Powell. “Guidelines
for reporting results of computational experiments. Report of the ad hoc committee”,
Mathematical programming, 49(1):413–425, 1990.

[44] Kallemyn, Benjamin S., Richard F. Deckro, and Kevin T. Kennedy. “On Considering
multiple optimal solutions in network interdiction”, 1–15, 2015. Working paper.

[45] Kennedy, Kevin T., Richard F. Deckro, James T. Moore, and Kenneth M. Hopkinson.
“Nodal interdiction”, Mathematical and Computer Modelling, 54(11):3116–3125, 2011.

[46] Knor, Martin. “A note on radially Moore digraphs”, Computers, IEEE Transactions
on, 45(3):381–382, 1996.

240

[47] Malik, Kavindra, A.K. Mittal, and Santosh K. Gupta. “The k most vital arcs in the
shortest path problem”, Operations Research Letters, 8(4):223–227, 1989.

[48] Mohar, Bojan and Y Alavi. “The Laplacian spectrum of graphs”, Graph theory, com-
binatorics, and applications, 2:871–898, 1991.

[49] Mohar, Bojan and Tomaž Pisanski. “How to compute the Wiener index of a graph”,
Journal of Mathematical Chemistry, 2(3):267–277, 1988.

[50] Montgomery, Maggie A and Menachem Elimelech. “Water and sanitation in develop-
ing countries: including health in the equation”, Environmental Science & Technology,
41(1):17–24, 2007.

[51] Morris, James F, Jerome W O’Neal, and Richard F Deckro. “A random graph generation
algorithm for the analysis of social networks”, The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology, 1548512912450370, 2013.

[52] Nardelli, Enrico, Guido Proietti, and Peter Widmayer. “Finding the most vital node of
a shortest path”, Theoretical computer science, 296(1):167–177, 2003.

[53] Newman, Mark. Networks: an introduction. Oxford University Press, 2010.

[54] Newman, Mark E.J., Steven H. Strogatz, and Duncan J. Watts. “Random graphs with
arbitrary degree distributions and their applications”, Physical review E, 64(2):026118,
2001.

[55] Plesńık, Ján. “On the sum of all distances in a graph or digraph”, Journal of Graph
Theory, 8(1):1–21, 1984.

[56] Rocco S., Claudio M., José Emmanuel Ramirez-Marquez, and Daniel E. Salazar A.
“Bi and tri-objective optimization in the deterministic network interdiction problem”,
Reliability Engineering & System Safety, 95(8):887–896, 2010.

[57] Royset, Johannes O. and R. Kevin Wood. “Solving the Bi-Objective Maximum-
Flow Network-Interdiction Problem”, INFORMS Journal on Computing, 19(2):175–184,
2007.

[58] Sherali, Hanif D. “Equivalent weights for lexicographic multi-objective programs: char-
acterizations and computations”, European Journal of Operational Research, 11(4):367–
379, 1982.

[59] Sherali, Hanif D. and Allen L. Soyster. “Preemptive and nonpreemptive multi-objective
programming: Relationship and counterexamples”, Journal of Optimization Theory and
Applications, 39(2):173–186, 1983.

[60] Department of Transportation, Federal Highway Administration. “Final Map of The
Eisenhower Interstate System”, www.fhwa.dot.gov/interstate/finalmap.cfm. Retrieved
January 30, 2014.

241

[61] Valente, Thomas W. and Robert K. Foreman. “Integration and radiality: Measuring the
extent of an individual’s connectedness and reachability in a network”, Social Networks,
20(1):89 – 105, 1998.

[62] Warshall, Stephen. “A Theorem on Boolean Matrices”, J. ACM, 9(1):11–12, January
1962. ISSN 0004-5411.

[63] Wasserman, Stanley and Katherine Faust. Social Network Analysis: Methods and Ap-
plications. Cambridge University Press, 1994.

[64] Watts, Duncan J. and Steven H. Strogatz. “Collective dynamics of small-
worldnetworks”, nature, 393(6684):440–442, 1998.

[65] West, Douglas Brent et al. Introduction to graph theory, volume 2. Prentice Hall, Upper
Saddle River, 2001.

[66] Wiener, Harry. “Structural determination of paraffin boiling points”, Journal of the
American Chemical Society, 69(1):17–20, 1947.

[67] Wollmer, Richard. “Removing arcs from a network”, Operations Research, 12(6):934–
940, 1964.

[68] Wood, R. Kevin. “Deterministic network interdiction”, Mathematical and Computer
Modelling, 17(2):1–18, 1993.

[69] Wood, R. Kevin. Bilevel Network Interdiction Models: Formulations and Solutions.
John Wiley & Sons, Inc., 2010.

242

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD–MM–YYYY)
17-09-2015

2. REPORT TYPE
Dissertation

3. DATES COVERED (From — To)
AUG 2012 – SEP 2015

4. TITLE AND SUBTITLE

Modeling Network Interdiction Tasks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Kallemyn, Benjamin S., Major, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER
AFIT-ENS-DS-15-S-032

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally left blank

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution Statement A. Approved For Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Mission planners seek to target nodes and/or arcs in networks that have the greatest benefit for an operational
plan. In joint interdiction doctrine, a top priority is to assess and target the enemy's vulnerabilities resulting in a
significant effect on its forces.

An interdiction task is an event that targets the nodes and/or arcs of a network resulting in its capabilities being
destroyed, diverted, disrupted, or delayed. Lessons learned from studying network interdiction model outcomes
help to inform attack and/or defense strategies.

A suite of network interdiction models and measures is developed to assist decision makers in identifying critical
nodes and/or arcs to support deliberate and rapid planning and analysis. The interdiction benefit of a node or arc is
a measure of the impact an interdiction task against it has on the residual network.

The research objective is achieved with a two-fold approach. The measures approach begins with a network and
uses node and/or arc measures to assess the benefit of each for interdiction. Concurrently, the models approach
employs optimization models to explicitly determine the nodes and/or arcs that are most important to the planned
interdiction task.

15. SUBJECT TERMS
Network Interdiction, Destroy, Divert, Disrupt, Delay, Optimization Models

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

 259

19a. NAME OF RESPONSIBLE PERSON
Richard F. Deckro, AFIT/ENS

a.
REPORT
U

b.
ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (Include Area Code)
(937) 255-6565, ext 4325
(richard.deckro@afit.edu)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

	Kallemyn - Dissertation
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Research Overview
	Dissertation Overview

	Pertinent Literature
	Introduction
	Network Topology Measures
	Nodal Measures - Graph Theory
	Network Measures - Graph Theory
	Nodal Measures - SNA
	Network Measures - SNA

	Optimization Models
	Network Interdiction
	Network Diversion
	Network Disruption

	Summary

	Measures After Destroying Nodes
	Introduction
	Geodesics and Related Measures
	Nodal Measures Related to Geodesics
	Network Measures Related to Geodesics
	All Geodesics Algorithms
	Analysis of Measure Computations
	Geodesics and Related Measures Summary

	Extending All Geodesics Information
	Extending Geodesic Algorithms
	Analysis of Measure Computations
	Expanding All Geodesics Information Summary

	Geodesics After Node Destruction
	GAND Approach
	GAND Extensions
	New Measures Related to GAND Outputs
	GAND Testing
	Geodesics After Node Destruction Summary

	Summary

	Destroy Interdiction Tasks
	Introduction
	Maximum Flow Models
	Shortest Path Models
	Summary

	Divert Interdiction Tasks
	Introduction
	Maximum Flow Diverting
	Numerical Examples
	Testing and Results

	Shortest Path Diverting
	Numerical Examples
	Testing and Results

	Model Extensions
	Extending the Divert Set
	Model Extensions for NDP

	Summary

	Disrupt Interdiction Tasks
	Introduction
	Disrupting Paths and Flows
	Notional Example
	Testing and Results

	Flow Model Extensions
	Disrupting with Limited Resources
	Targeting for Multiple Strikes
	Mission Success by Threshold
	Pareto Solutions

	Summary

	Delay Interdiction Tasks
	Introduction
	Model Development
	Testing
	Model Extensions
	Summary

	Conclusion
	Summary
	Contributions
	Future Research
	Concluding Remarks

	Test Plan
	Poster
	Bibliography

	SF 298 - Kallemyn

